Giải phương trình:
\(\sin\left(\dfrac{3\pi}{10}-\dfrac{x}{2}\right)=\dfrac{1}{2}\sin\left(\dfrac{\pi}{10}+\dfrac{3x}{2}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: cos(2x+pi/6)=cos(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi
=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi
=>x=pi/30+k2pi/5 hoặc x=pi-k2pi
2: sin(2x+pi/6)=sin(pi/3-3x)
=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi
=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi
=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi
1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{4}=x-\dfrac{\pi}{3}+k2\pi\\3x+\dfrac{\pi}{4}=\pi-\left(x-\dfrac{\pi}{3}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{-7\pi}{12}+k2\pi\\4x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7\pi}{24}+k\pi\\x=\dfrac{13\pi}{48}+k\pi\end{matrix}\right.\left(k\in Z\right)\)
\(sin\left(3x+\dfrac{\Pi}{4}\right)=sin\left(x-\dfrac{\Pi}{3}\right)\)
\(\Leftrightarrow3x+\dfrac{\Pi}{4}=x-\dfrac{\Pi}{3}+K2\Pi\)
\(\Leftrightarrow2x=-\dfrac{7\Pi}{12}+K2\Pi\)
\(\Leftrightarrow x=-\dfrac{7\Pi}{24}+K\Pi\) \(\left(K\in Z\right)\)
a: \(\Leftrightarrow sin\left(\dfrac{x}{3}-\dfrac{pi}{4}\right)=sinx\)
=>x/3-pi/4=x+k2pi hoặc x/3-pi/4=pi-x+k2pi
=>2/3x=-pi/4+k2pi hoặc 4/3x=5/4pi+k2pi
=>x=-3/8pi+k3pi hoặc x=15/16pi+k*3/2pi
b: =>(sin3x-sin2x)(sin3x+sin2x)=0
=>sin3x-sin2x=0 hoặc sin 3x+sin 2x=0
=>sin 3x=sin 2x hoặc sin 3x=sin(-2x)
=>3x=2x+k2pi hoặc 3x=pi-2x+k2pi hoặc 3x=-2x+k2pi hoặc 3x=pi+2x+k2pi
=>x=k2pi hoặc x=pi/5+k2pi/5 hoặc x=k2pi/5 hoặc x=pi+k2pi
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}sin^22x-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow1-\dfrac{1}{2}\left(\dfrac{1-cos4x}{2}\right)-\dfrac{1}{2}cos4x+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}cos4x+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow-\dfrac{3}{4}-\dfrac{1}{4}\left(1-2sin^22x\right)+\dfrac{1}{2}sin2x=0\)
\(\Leftrightarrow...\)
a, \(\left|sinx+\dfrac{1}{2}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow sin^2x+sinx+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow sin^2x+sinx=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)
b, \(tan^2\left(x+\dfrac{\pi}{6}\right)=3\)
\(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=\pm\sqrt{3}\)
\(\Leftrightarrow x+\dfrac{\pi}{6}=\pm\dfrac{\pi}{3}+k\pi\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
`a)sin x =4/3`
`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`
`b)sin 2x=-1/2`
`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`
`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}` `(k in ZZ)`
`c)sin(x - \pi/7)=sin` `[2\pi]/7`
`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`
`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}` `(k in ZZ)`
`d)2sin (x+pi/4)=-\sqrt{3}`
`<=>sin(x+\pi/4)=-\sqrt{3}/2`
`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`
`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}` `(k in ZZ)`
a: sin x=4/3
mà -1<=sinx<=1
nên \(x\in\varnothing\)
b: sin 2x=-1/2
=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi
=>x=-1/12pi+kpi và x=7/12pi+kpi
c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)
=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi
=>x=3/7pi+k2pi và x=pi+k2pi
d: 2*sin(x+pi/4)=-căn 3
=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi
=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi
\(\sqrt{3}cos\left(x+\dfrac{\pi}{2}\right)+sin\left(x-\dfrac{\pi}{2}\right)=2sin2x\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{2}\right)-\dfrac{1}{2}cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}+x\right)=sin2x\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx+sin2x=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)+sin2x=0\)
\(\Leftrightarrow2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{12}\right).cos\left(\dfrac{\pi}{12}-\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(\dfrac{3x}{2}+\dfrac{\pi}{12}\right)=0\\cos\left(\dfrac{\pi}{12}-\dfrac{x}{2}\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{3x}{2}+\dfrac{\pi}{12}=k\pi\\\dfrac{\pi}{12}-\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{18}+\dfrac{k2\pi}{3}\\x=-\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)
1, \(\left(sinx+\dfrac{sin3x+cos3x}{1+2sin2x}\right)=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+2sinx.sin2x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx-cos3x+sin3x+cos3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{sinx+cosx+sin3x}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{2sin2x.cosx+cosx}{1+2sin2x}=\dfrac{3+cos2x}{5}\)
⇔ \(\dfrac{cosx\left(2sin2x+1\right)}{1+2sin2x}=\dfrac{2+2cos^2x}{5}\)
⇒ cosx = \(\dfrac{2+2cos^2x}{5}\)
⇔ 2cos2x - 5cosx + 2 = 0
⇔ \(\left[{}\begin{matrix}cosx=2\\cosx=\dfrac{1}{2}\end{matrix}\right.\)
⇔ \(x=\pm\dfrac{\pi}{3}+k.2\pi\) , k là số nguyên
2, \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\left(1+cot2x.cotx\right)=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cos2x.cosx+sin2x.sinx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2}{sin^2x}.\dfrac{cosx}{sin2x.sinx}=0\)
⇔ \(48-\dfrac{1}{cos^4x}-\dfrac{2cosx}{2cosx.sin^4x}=0\)
⇒ \(48-\dfrac{1}{cos^4x}-\dfrac{1}{sin^4x}=0\). ĐKXĐ : sin2x ≠ 0
⇔ \(\dfrac{1}{cos^4x}+\dfrac{1}{sin^4x}=48\)
⇒ sin4x + cos4x = 48.sin4x . cos4x
⇔ (sin2x + cos2x)2 - 2sin2x. cos2x = 3 . (2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}\) . (2sinx . cosx)2 = 3(2sinx.cosx)4
⇔ 1 - \(\dfrac{1}{2}sin^22x\) = 3sin42x
⇔ \(sin^22x=\dfrac{1}{2}\) (thỏa mãn ĐKXĐ)
⇔ 1 - 2sin22x = 0
⇔ cos4x = 0
⇔ \(x=\dfrac{\pi}{8}+\dfrac{k\pi}{4}\)
3, \(sin^4x+cos^4x+sin\left(3x-\dfrac{\pi}{4}\right).cos\left(x-\dfrac{\pi}{4}\right)-\dfrac{3}{2}=0\)
⇔ \(\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+\dfrac{1}{2}sin\left(4x-\dfrac{\pi}{2}\right)+\dfrac{1}{2}sin2x-\dfrac{3}{2}=0\)
⇔ \(1-\dfrac{1}{2}sin^22x+\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{3}{2}=0\)
⇔ \(\dfrac{1}{2}sin2x-\dfrac{1}{2}cos4x-\dfrac{1}{2}-\dfrac{1}{2}sin^22x=0\)
⇔ sin2x - sin22x - (1 + cos4x) = 0
⇔ sin2x - sin22x - 2cos22x = 0
⇔ sin2x - 2 (cos22x + sin22x) + sin22x = 0
⇔ sin22x + sin2x - 2 = 0
⇔ \(\left[{}\begin{matrix}sin2x=1\\sin2x=-2\end{matrix}\right.\)
⇔ sin2x = 1
⇔ \(2x=\dfrac{\pi}{2}+k.2\pi\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\)
4, cos5x + cos2x + 2sin3x . sin2x = 0
⇔ cos5x + cos2x + cosx - cos5x = 0
⇔ cos2x + cosx = 0
⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)
⇔ \(cos\dfrac{3x}{2}=0\)
⇔ \(\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\)
⇔ x = \(\dfrac{\pi}{3}+k.\dfrac{2\pi}{3}\)
Do x ∈ [0 ; 2π] nên ta có \(0\le\dfrac{\pi}{3}+k\dfrac{2\pi}{3}\le2\pi\)
⇔ \(-\dfrac{1}{2}\le k\le\dfrac{5}{2}\). Do k là số nguyên nên k ∈ {0 ; 1 ; 2}
Vậy các nghiệm thỏa mãn là các phần tử của tập hợp
\(S=\left\{\dfrac{\pi}{3};\pi;\dfrac{5\pi}{3}\right\}\)
Đặt \(t=\dfrac{3\pi}{10}-\dfrac{x}{2}\)\(\Rightarrow\pi-3t=\dfrac{\pi}{10}+\dfrac{3\pi}{2}\)
\(pt\Leftrightarrow2sint=sin\left(\pi-3t\right)\)
\(\Leftrightarrow2sint=3sint-4sin^3t\)
\(\Leftrightarrow sint\left(1-4sin^2t\right)=0\)
\(\Leftrightarrow sint\left(2cos2t\right)=0\)
dễ nhé :3
dấu tương đương cuối coi lại nhé