K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Biểu thức được biến đổi thành:

\(=\left(2a\right)^2+2.2a+1+1\)

\(=\left(2a+1\right)^2+1\)

Đặt biểu thức trên là A, ta có:

\(\left(2x+1\right)\ge0=>MinA=1\) khi (2x-1) = 0 => \(x=\dfrac{1}{2}\)

Vậy giá trị nhỏ nhất của biểu thức là 1;

Chúc bạn học tốt.......

3 tháng 3 2017

Đáp án đúng : A

Dấu “=” xảy ra  ⇔ 2 a − 1 3 − 2 a ≥ 0 ⇔ 1 2 ≤ a ≤ 3 2

Vậy GTNN của B là 2 khi  1 2 ≤ a ≤ 3 2

8 tháng 6 2017

a) M có nghĩa khi  a 3 - 4 a ≠ 0 ⇔ a ≠ { 0 ; ± 2 }

b) Rút gọn thu được: M = a ( a 2 + 4 a + 4 ) a ( a 2 − 4 ) = a + 2 a − 2  

c) M = − 3 ⇔ a + 2 a − 2 = − 3 ⇔ a = 1  (TMĐK)

20 tháng 11 2017

A=(a4-2a3+a2) +2(a2-2a+1) +3

 =(a2-a)2 + 2(a-1)2 + 3 \(\ge\)3

Dấu bằng xay ra khi a=1

20 tháng 11 2017

A=a4 -2a3 +3a2 -4a +5

=a4 -2a3 +a2 +2a2-4a+2+3

=(a4 -2a3 +a2) +2(a2 -2a +1)+3

=(a2-a)2 +2(a-1)2 +3

\(\hept{\begin{cases}\left(a^2-a\right)^2\ge3\\2\left(a-1\right)^2\ge3\end{cases}\Rightarrow A_{Min}=3}\)

5 tháng 1 2016

a=0 và giá trị nhỏ nhất là 5

5 tháng 1 2016

a=0 và gtnn của phép tính là 5

8 tháng 4 2017

thông cảm . Mình học lớp 6 thui

17 tháng 1 2017

2a=x

2b=y

cho gọn hệ số

\(\Leftrightarrow x^2+xy+y^2-6x-6y+12\\ \\\)

\(\left(x+\frac{y}{2}-3\right)^2+\left(y^2-6y+12\right)-\left(\frac{y^2}{4}-3y+9\right)\) để nguyên lại cho bạn dẽ hiểu

\(\left(x+\frac{y}{2}-3\right)^2+\frac{3}{4}\left(y-2\right)^2\ge0\)đẳng thức khi y=2; x=2=> a=b=4

17 tháng 1 2017

Bác Ngô Như Minh giải đúng rồi. Nhầm một tí ở đoạn cuối cùng, đó là a = b = 1 mới đúng.

Tuy nhiên chỗ đó không quan trọng lắm. Nhầm lẫn là chuyện bình thường.

Ủng hộ bác Minh vác Kiếm tung hoành thiên hạ. Em chọn đúng rồi đấy.

27 tháng 8 2020

Bài 1

a) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x-1\right)\left(x+1\right)\)

\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1+x^3-3x\left(x^2-1\right)\)

\(=3x^3+6x-3x^3+3x=9x\)

b) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)

\(=a^2+b^2+c^2+2\left(ab+bc+ca\right)+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)

\(=6a^2+3b^2+2c^2+4ab-4ab=6a^2+3b^2+2c^2\)

Bài 2 

a) \(x^2-20x+101=\left(x^2-20x+100\right)+1=\left(x-10\right)^2+1\ge1\)

Dấu = xảy ra \(< =>\left(x-10\right)^2=0< =>x-10=0< =>x=10\)

b) \(4a^2+4a+2=4\left(a^2+a+\frac{1}{4}\right)+1=4\left(a+\frac{1}{2}\right)^2+1\ge1\)

Dấu = xảy ra \(< =>4\left(a+\frac{1}{2}\right)^2=0< =>a+\frac{1}{2}=0< =>a=-\frac{1}{2}\)

c) \(x^2-4xy+5y^2+10x-22y+28=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+y^2-2y+1+27\)

\(=\left(x-2y\right)^2+2.5.\left(x-2y\right)+25+\left(y-1\right)^2+2\)

\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)

Dấu = xảy ra \(< =>\hept{\begin{cases}y-1=0\\x-2y+5=0\end{cases}< =>\hept{\begin{cases}y=1\\x=-3\end{cases}}}\)

Bài 3 

a) \(4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Dấu = xảy ra \(< =>\left(x-2\right)^2=0< =>x-2=0< =>x=2\)

b) \(x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu = xảy ra \(< =>\left(x-\frac{1}{2}\right)^2=0< =>x-\frac{1}{2}=0< =>x=\frac{1}{2}\)