K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\left|2x+\dfrac{2}{3}\right|\ge0\Rightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

=> MaxB=2/3 => 2x+2/3=0 <=> x=-1/3

Vậy MaxB=2/3 khi x=-1/3

11 tháng 7 2017

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\text{Ta có : }\left|2x+\dfrac{2}{3}\right|\ge0\text{ }\forall\text{ }x\\ \Rightarrow B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

\(\text{Dấu "=" xảy ra khi : }\left|2x+\dfrac{2}{3}\right|=0\\ \Leftrightarrow2x+\dfrac{2}{3}=0\\ \Leftrightarrow2x=-\dfrac{2}{3}\\ \Leftrightarrow x=-\dfrac{1}{3}\)

Vậy \(x=-\dfrac{1}{3}\)

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

a: Ta có: \(x^2=3-2\sqrt{2}\)

nên \(x=\sqrt{2}-1\)

Thay \(x=\sqrt{2}-1\) vào A, ta được:

\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)

1:

ĐKXĐ: \(x\notin\left\{3;-2;1\right\}\)

 \(A=\left(\dfrac{x\left(x+2\right)-x+1}{\left(x-3\right)\left(x+2\right)}\right):\left(\dfrac{x\left(x-3\right)+5x+1}{\left(x+2\right)\left(x-3\right)}\right)\)

\(=\dfrac{x^2+2x-x+1}{\left(x-3\right)\left(x+2\right)}\cdot\dfrac{\left(x+2\right)\left(x-3\right)}{x^2-3x+5x+1}\)

\(=\dfrac{x^2+x+1}{\left(x-1\right)^2}\)

 

21 tháng 6 2023

`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`

Ta cần tìm `max(5/(sqrtx-2))`

Nếu `0<=x<4` thì `5/(sqrtx-2)<0`

Nếu `x>4` thì `5/(sqrtx-2)>0`

Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`

`=>sqrtx-2>=sqrt5-2`

`=>5/(sqrtx-2)<=5/(sqrt5-2)`

`=>C<=1+5/(sqrt5-2)=11+sqrt5`

Vậy `C_(max)=11+sqrt5<=>x=5`

29 tháng 8 2017

a ) \(A=0,6+\left|\dfrac{1}{2}-x\right|\)

Ta có : \(\left|\dfrac{1}{2}-x\right|\ge0\)

\(\Leftrightarrow0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Vậy GTNN là 0,6 khi \(x=\dfrac{1}{2}.\)

- Đề ghi ko hiểu ?

b ) \(\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

Ta có : \(\left|2x+\dfrac{2}{3}\right|\ge0\)

\(\Leftrightarrow\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Vậy GTNN là \(\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

29 tháng 8 2017

\(A=0,6+\left|\dfrac{1}{2}-x\right|\)

\(\left|\dfrac{1}{2}-x\right|\ge0\forall x\in R\)

\(A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\)

Dấu "=" xảy ra khi:

\(\left|\dfrac{1}{2}-x\right|=0\Rightarrow x=\dfrac{1}{2}\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\)

\(\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\)

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\)

Dấu "=" xảy ra khi:

\(\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow2x=-\dfrac{2}{3}\Leftrightarrow x=-\dfrac{1}{3}\)

21 tháng 6 2023

Cách 1: Ta nhận thấy với mọi \(x>0\) thì \(3\sqrt{x}+2>2\sqrt{x}+2\), do đó \(B>1\). Với \(x=0\) thì \(B=1\). Do đó \(min_B=1\Leftrightarrow x=0\)

 Cách 1 tuy nhanh gọn nhưng nó chỉ có tác dụng trong một số ít các trường hợp. Trường hợp này may mắn cho ta ở chỗ ta có thể đánh giá tử lớn hơn hoặc bằng mẫu với mọi \(x\ge0\) (dấu "=" chỉ xảy ra khi \(x=0\))

Cách 2: \(B=\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\)

\(\Leftrightarrow2B\sqrt{x}+2B=3\sqrt{x}+2\)

\(\Leftrightarrow\left(2B-3\right)\sqrt{x}=2-2B\)

\(\Leftrightarrow\sqrt{x}=\dfrac{2-2B}{2B-3}\)

Vì \(\sqrt{x}\ge0\) nên \(\dfrac{2-2B}{2B-3}\ge0\)

\(\Leftrightarrow1\le B< \dfrac{3}{2}\). Như vậy \(min_B=1\Leftrightarrow x=0\)

 Rõ ràng cách 2 dài hơn cách 1 nhưng nó có thể áp dụng trong nhiều dạng bài tìm GTNN hay GTLN khác nhau. Bạn xem xét bài toán rồi chọn cách làm cho phù hợp là được.

21 tháng 6 2023

B =  \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}+2}\) = \(\dfrac{3\sqrt{x}+3-1}{2\sqrt{x}+2}\) = \(\dfrac{3\left(\sqrt{x}+1\right)-1}{2\left(\sqrt{x}+1\right)}\) = \(\dfrac{3}{2}\) - \(\dfrac{1}{2\left(\sqrt{x}+1\right)}\)

Vì  \(\dfrac{1}{2\sqrt{x}+2}\) > 0 ∀ \(x\) ≥ 0 ⇒ B min ⇔A =  \(\dfrac{1}{2\sqrt{x}+2}\) max

2\(\sqrt{x}\) ≥ 0 ⇒ 2\(\sqrt{x}\) + 2 ≥ 2  ⇒ Max A = \(\dfrac{1}{2}\) ⇔ \(x\) = 0

Vậy Min B = \(\dfrac{3}{2}\) - \(\dfrac{1}{2}\)  =  1 ⇔ \(x\) = 0

a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2\le0\forall x\)

\(\Rightarrow-3\left(2x-1\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi 2x-1=0

\(\Leftrightarrow2x=1\)

hay \(x=\dfrac{1}{2}\)

Vậy: Giá trị lớn nhất của biểu thức \(A=5-3\left(2x-1\right)^2\) là 5 khi \(x=\dfrac{1}{2}\)

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull