1 phòng họp dự định 120 người họp. nhưng khi họp cps 160 người tham dự nên phải kê thêm 2 dãy ghế nữa và mỗi dãy kê thêm 1 ghế thì vừa đủ. tính số dãy ghế dự định lúc đầu biết số dãy ghế lúc đầu nhiều hơn 20 dãy và số ghế trên mỗi dãy bằng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số dãy ghế dự định lúc đầu là \(x\) (dãy)
ĐK: \(x>20;x\in\mathbb N^*\)
Số ghế trong một dãy dự định lúc đầu là: \(\dfrac{120}{x}\) (ghế)
Thực tế số người tham dự là 160 và số dãy ghế là: \(x+2\)
⇒ Số ghế trong một dãy là: \(\dfrac{160}{x+2}\) (ghế)
Vì thực tế mỗi dãy ghế phải kê thêm 1 ghế so với dự định nên ta có pt:
\(\dfrac{160}{x+2}-\dfrac{120}{x}=1\)
.... (Tự giải pt)
\(\Leftrightarrow x^2-38+240=0\)
\(\Leftrightarrow\left(x-8\right)\left(x-30\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\left(\text{loại}\right)\\x=30\left(\text{TM}\right)\end{matrix}\right.\)
Vậy số dãy ghế dự định lúc đầu là 30 dãy ghế.
Gọi số dãy ghế lúc đầu của phòng họp là \(x\)(dãy) \(x\inℕ^∗,x>20\).
Số ghế trên mỗi dãy lúc đầu là: \(\frac{120}{x}\)(ghế)
Thực tế có số dãy ghế là: \(x+2\)(dãy)
Mỗi dãy có số ghế là: \(\frac{120}{x}+1\)(ghế)
Ta có phương trình:
\(\left(x+2\right)\left(\frac{120}{x}+1\right)=160\)
\(\Leftrightarrow120+\frac{240}{x}+x+2=160\)
\(\Leftrightarrow\orbr{\begin{cases}x=8\left(l\right)\\x=30\left(tm\right)\end{cases}}\)
Gọi số dãy ghế theo dự định là x(dãy) (x>20)
=> Mổi dãy có 120x120x (ghế)
Số dãy ghế lúc sau là x+2 (dãy)
=> Mổi dãy có 160x+2160x+2 (ghế)
Vì số ghế ở mỗi dãy lúc sau nhiều hơn lúc đầu là 1(ghế) nên ta có pt:
160x+2160x+2 -120x120x =1
↔↔ x2x2 -38x+240=0
↔↔ \left[\begin{x=30}\\{x=8}\left[\begin{x=30}\\{x=8}
KL : Vì số dãy lớn hơn 20 nên số dãy ghế trong phòng họp lúc đầu là 30(dãy)
Gọi số dãy ghế lúc dự định họp là x thì số dãy ghế khi họp chính thức là x+2
(X>20)
mỗi dãy dự định có 120/x ghế mỗi dãy ghế khi dự hợp là 160/x+2
theo đề ta có PT: 160/x+2-120/x=1
Sau khi giải tìm dc 2 nghiệm là 30 và 8 chọn 30 do điều kiện là X>20
vậy số dãy ghê ban đầu là 30
~T.I.C.K NHA~
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=>
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Gọi x ( dãy) là số dãy ghế dự định lúc đầu của phòng họp
( đk: \(x>20,x\in N\)* )
\(\dfrac{120}{x}\) ( ghế) là số ghế mỗi dãy dự định
x+2 ( dãy) là số dãy ghế thực tế của phòng họp
\(\dfrac{160}{x+2}\) ( ghế) là số ghế mỗi dãy thực tế
Vì thực tế phòng có 160 người, phải kê thêm 2 dãy và mỗi dãy thêm 1 ghế mới đủ nên ta có phương trình:
\(\dfrac{120}{x}=\dfrac{160}{x+2}-1\)
\(\Leftrightarrow120\left(x+2\right)=160x-x\left(x+2\right)\)
\(\Leftrightarrow120x+240-160x+x^2+2x=0\)
\(\Leftrightarrow x^2-38x+240=0\)
\(\Leftrightarrow\left(x-30\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30=0\\x-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=30\left(tmđk\right)\\x=8\left(ktmđk\right)\end{matrix}\right.\)
Vậy theo dự định phòng họp có 30 dãy ghế