K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

\(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{matrix}\right.\Leftrightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

\(\left|2x-27\right|^{2017}+\left(3y+10\right)^{2012}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=13,5\\y=\dfrac{-10}{3}\end{matrix}\right.\)

Vậy...

10 tháng 7 2017

\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

\(\left|2x-27\right|^{2011}\ge0;\left(3y+10\right)^{2012}\ge0\)

Dấu "=" xảy ra khi:

\(\left|2x-27\right|^{2011}=0\)

\(\Rightarrow\left|2x-27\right|=0\Rightarrow2x-27=0\Rightarrow2x=27\Rightarrow x=\dfrac{27}{2}\)

\(\left(3y+10\right)^{2012}=0\)

\(\Rightarrow3y+10=0\Rightarrow3y=-10\Rightarrow y=\dfrac{-10}{3}\)

27 tháng 9 2017

Vì \(\left|2x-27\right|\ge0\Rightarrow\left|2x-27\right|^{2011}\ge0\);  \(\left(3y+10\right)^{2012}\ge0\)

=>\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

Dấu "=" xảy ra khi \(\left|2x-27\right|^{2011}=\left(3y+10\right)^{2012}=0\Leftrightarrow\hept{\begin{cases}\left|2x-27\right|=0\\\left(3y+10\right)^{2012}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

17 tháng 11 2019

Do  \(\hept{\begin{cases}\left|2x-4\right|^{2011}\ge0\\\left(y+2013\right)^{2012}\ge0\end{cases}}\) nên để \(\left|2x-4\right|^{2011}+\left(y+2013\right)^{2012}=0\)thì : 

\(\hept{\begin{cases}\left|2x-4\right|^{2011}=0\\\left(y+2013\right)^{2012}=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x-4=0\\y+2013=0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x=4\\y=-2013\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-2013\end{cases}}}\)

Vậy x = 2 ; y = -2013

17 tháng 11 2019

Có /2x-4/^2011 luôn >=0 với mọi x

(y+2013)^2012 >= 0 với mọi y

Mà tổng lại =0

=> ''='' xảy ra <=> 2x-4=0 và y+2013=0

<=> x=2 và y=-2013.

Vậy x=2 và y=-2013.

23 tháng 12 2021

Vì \(\left\{{}\begin{matrix}\left|2x-27\right|^{2011}\text{≥0,∀x}\\\left(3y+10\right)^{2012}\text{≥0,∀y}\end{matrix}\right.\)

⇒ \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\text{≥0,∀x},y\)

Dấu "=" ⇔ \(\left\{{}\begin{matrix}2x-27=0\\3y+10=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{27}{2}\\y=-\dfrac{10}{3}\end{matrix}\right.\)

Vậy ...

18 tháng 12 2020

Ta có \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2022}\ge0\forall y\end{cases}}\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2022}\ge0\forall x;y\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}\)

Vậy x = 27/2 ; y = -10/3 là giá trị cần tìm

18 tháng 12 2020

ta có |2x-27| > hoặc = 0=> |2x-27|^2011> hoặc = 0

(3y+10)^2012> hoặc 0 mà |2x-27|^2011+(3y+10)^2012=0 

=>2x-27=0 hoặc 3y+10=0=>2x=27 hoặc 3y=-10

=>x=13,5 hoặc x=-10/3

vậy .............................

19 tháng 12 2015

|2x-27|^2011>0

(3y+10)^2>0

=|2x-27|^2011+(3y+10)^2>0

mà |2x-27|^2011+(3y+10)^2=0

=>|2x-27|^2011=(3y+10)^2=0

+)|2x-27|^2011=0=>2x-27=0=>2x=27=>x=13,5

+)(3y+10)^2=0=>3y+10=0=>3y=-10=>y=-10/3