K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2015

AC=AB/ tan \(40^0\) =25

BC=AB/sin \(40^0\) =32,6

góc B=\(90^0\) \(-\)   \(40^0\) =\(50^0\)

=>Góc ABD=\(25^0\)

BD=AB/cos \(25^0\) =23,7

26 tháng 10 2021

a: \(BC=\sqrt{18^2+24^2}=30\left(mm\right)\)=3(cm)

Xét ΔACB có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=2,4/8=0,3

=>AD=0,9cm; CD=1,5cm

b: Xét ΔCED và ΔCAB có

CE/CA=CD/CB

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>góc CED=góc CAB=90 độ

d: ΔCED đồng dạng với ΔCAB

=>ED/AB=CE/CA

=>ED/1,8=1,2/2,4

=>ED=0,9cm

c: ΔCED đồng dạng với ΔCAB

=>\(\dfrac{S_{CED}}{S_{CAB}}=\left(\dfrac{CE}{CA}\right)^2=\dfrac{1}{4}\)

 

14 tháng 3 2022

`Answer:`

Sửa đề câu a.: Tính tỉ số diện tích hai tam giác ABD và tam giác ACD nhé.

C D H A B

a. `\triangleABD` và `\triangleACD` có chung đường cao hạ từ `A`

\(\Rightarrow\frac{S_{ABD}}{S_{ACD}}=\frac{BD}{CD}=\frac{AB}{AC}=\frac{12}{16}=\frac{3}{4}\)

b. Áp dụng định lý Pytago: `AB^2+AC^2=BC^2<=>12^2+16^2=BC^2<=>BC^2=400<=>BC=20cm`

c. Ta có: `BC=BD+CD=20cm`

Mà `\frac{BD}{CD}=3/4=>\frac{BD}{3}=\frac{CD}{4}=\frac{BD+CD}{3+4}=\frac{20}{7}`\(\Rightarrow\hept{\begin{cases}BD=\frac{60}{7}cm\\CD=\frac{80}{7}cm\end{cases}}\)

d. \(S_{ABC}=\frac{1}{2}.AB.AC=\frac{1}{2}.AH.BC\Rightarrow AH=\frac{12.16}{20}=9,6cm\)

a: AD là phân giác

=>BD/CD=AB/AC=3/4

=>S ABD/S ACD=3/4

b: BC=căn 16^2+12^2=20cm

c: AD là phân giác

=>BD/3=CD/4=(BD+CD)/(3+4)=20/7

=>BD=60/7cm; CD=80/7cm

d: AH=12*16/20=192/20=9,6cm

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Vậy: BC=20cm

8 tháng 4 2019

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64