cho
a=2^3*3*5 và b=2^2*5^4
tính a.b và a:b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:b=2:5; b:c=4:3=>\(\frac{a}{2}=\frac{b}{5};\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(k=\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\Rightarrow k^2=\frac{a.b}{8.20}=\frac{c^2}{225}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(k^2=\frac{a.b}{160}=\frac{c^2}{225}=\frac{a.b-c^2}{160-225}=\frac{-10,4}{-65}=0,16\)
\(\Rightarrow\left[\begin{array}{nghiempt}k=0,4\\k=-0,4\end{array}\right.\)
Với k=0,4=>a=3,2; b=8; c=6=>|a+b+c|=17,2
Với k=-0,4 =>a=-3,2; b=-8; c=-6=>|a+b+c|=17,2
Vậy|a+b+c|=17,2
\(a\div b=2\div5\Rightarrow a=\frac{2}{5}b\)
\(b\div c=4\div3\Rightarrow c=\frac{3}{4}b\)
\(ab-c^2=-10,4\)
\(\Leftrightarrow\frac{2}{5}b.b-\left(\frac{3}{4}b\right)^2=-10,4\)
\(\Leftrightarrow\frac{-13}{80}b^2=-10,4\)
\(\Leftrightarrow b^2=64\)
\(\Leftrightarrow\orbr{\begin{cases}b=8\Rightarrow a=\frac{16}{5},c=6\\b=-8\Rightarrow a=\frac{-16}{5},c=-6\end{cases}}\)
\(\left|a+b+c\right|=\left|8+\frac{16}{5}+6\right|=\frac{86}{5}=17,2\)
Giải:
Ta có: \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{8}=\frac{b}{20}\)
\(\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{b}{20}=\frac{c}{15}\)
\(\Rightarrow\frac{a}{8}=\frac{b}{20}=\frac{c}{15}\)
Đặt \(\frac{a}{8}=\frac{b}{20}=\frac{c}{15}=k\)
\(\Rightarrow a=8k,b=20k,c=15k\)
Mà \(ab-c^2=-10,4\)
\(\Rightarrow8k20k-\left(15k\right)^2=-10,4\)
\(\Rightarrow160k^2-15^2.k^2=-10,4\)
\(\Rightarrow\left(160-15^2\right).k^2=-10,4\)
\(\Rightarrow-65.k^2=-10,4\)
\(\Rightarrow k^2=0,16\)
\(\Rightarrow k=\pm0,4\)
+) \(k=0,4\Rightarrow a=3,2;b=8;c=6\)
+) \(k=-0,4\Rightarrow a=-3,2;b=-8;c=-6\)
Vậy bộ số \(\left(a;b;c\right)\) là \(\left(3,2;8;6\right);\left(-3,2;-8;-6\right)\)
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
Có: \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\Leftrightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
=> \(\begin{cases}a^2=\frac{324}{25}\\b^2=\frac{576}{25}\end{cases}\)\(\Leftrightarrow\begin{cases}a=\frac{18}{5};a=-\frac{18}{5}\\b=\frac{24}{5};b=-\frac{24}{5}\end{cases}\)
Cặp (x;y) thỏa mãn là: \(\left(\frac{18}{5};\frac{24}{5}\right);\left(-\frac{18}{5};-\frac{24}{5}\right)\)
Giải:
Ta có: \(a:b=3:4\Rightarrow\frac{a}{3}=\frac{b}{4}\Rightarrow\frac{a^2}{9}=\frac{b^2}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^2}{9}=\frac{b^2}{16}=\frac{a^2+b^2}{9+16}=\frac{36}{25}\)
+) \(\frac{a^2}{9}=\frac{36}{25}\Rightarrow a^2=\frac{324}{25}=\pm\frac{18}{5}\)
+) \(\frac{b^2}{16}=\frac{36}{25}\Rightarrow b^2=\frac{576}{25}=\pm\frac{24}{5}\)
- Nếu \(a=\frac{18}{5},b=\frac{24}{5}\Rightarrow a.b=\frac{18}{5}.\frac{24}{5}=\frac{432}{25}=17,8\)
- Nếu \(a=\frac{-18}{5},b=\frac{-24}{5}\Rightarrow a.b=\frac{-18}{5}.\frac{-24}{5}=\frac{432}{25}=17,8\)
Vậy a.b = 17,8
Ta có:
\(a.b=2^3.3.5.2^2.5^4=2^5.3.5^5=3.10^5\)
\(\dfrac{a}{b}=\dfrac{2^3.3.5}{2^2.5^4}=\dfrac{2.3}{5^3}=\dfrac{6}{125}\)
Vậy........
Chúc bạn học tốt!!!