Cho tam giác nhọn ABC, 3 đường cao AH, BI, CK
CM: SHIK= (1 - cos2A - cos2B - cos2C).SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(S_{IHK}=S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}\)
\(\Rightarrow\frac{S_{IHK}}{S_{ABC}}=\frac{S_{ABC}-S_{AIK}-S_{BKH}-S_{CIH}}{S_{ABC}}\)
\(=1-\frac{S_{AIK}}{S_{ABC}}-\frac{S_{BKH}}{S_{ABC}}-\frac{S_{CIH}}{S_{ABC}}\)
Kẻ \(KK_1\perp AC\)
Ta có \(\frac{S_{AIK}}{S_{ABC}}=\frac{\frac{1}{2}KK_1\cdot AI}{\frac{1}{2}BI\cdot AC}=\frac{KK_1\cdot AI}{BI\cdot AC}\)
Do \(KK_1\)song song với \(BI\Rightarrow\frac{KK_1}{BI}=\frac{AK}{AB}\)
Nên : \(\frac{S_{AIK}}{S_{ABC}}=\frac{AI\cdot AK}{AC\cdot AB}\)
Trong tam giác vuông \(AKC,\)ta có :
\(\frac{AK}{AC}=\cos A\)
Trong tam giác vuông \(AIB,\)ta có
\(\frac{AI}{AB}=\cos A\)
rồi tiếp theo dễ rồi , bạn suy nghĩ tiếp nhá
\(cos2A+cos2B-cos2C\le\frac{3}{2}\)
\(\Leftrightarrow2cos\left(A+B\right).cos\left(A-B\right)-2cos^2C+1\le\frac{3}{2}\)
\(\Leftrightarrow-cos\left(C\right).cos\left(A-B\right)-cos^2C\le\frac{1}{4}\)
\(\Leftrightarrow4cos^2C+4cosC.cos\left(A-B\right)+1\ge0\)
\(\Leftrightarrow4cos^2C+4cosC.cos\left(A-B\right)+cos^2\left(A-B\right)+sin^2\left(A-B\right)\ge0\)
\(\Leftrightarrow\left(2cosC+cos\left(A-B\right)\right)^2+sin^2\left(A-B\right)\ge0\)(đúng)
Ta có ĐPCM
Lời giải:
Sử dụng các công thức lượng giác ta thực hiện biến đổi biểu thức như sau:
\(\cos 2A+\cos 2B+\cos =2\cos \frac{2A+2B}{2}\cos \frac{2A-2B}{2}+\cos ^2C-\sin ^2C\)
\(=2\cos (A+B)\cos (A-B)+2\cos ^2C-(\sin ^2C+\cos ^2C)\)
\(=2\cos (\pi -C)\cos (A-B)+2\cos ^2C-1\)
\(=2\cos ^2C-2\cos C\cos ^2(A-B)-1\)
\(=2[\cos ^2C-\cos C\cos (A-B)+\frac{1}{4}\cos ^2(A-B)]-\frac{1}{2}\cos ^2(A-B)-1\)
\(=2[\cos C-\frac{1}{2}\cos (A-B)]^2-\frac{1}{2}\cos ^2(A-B)-1\)
Ta thấy :
\(2[\cos C-\frac{1}{2}\cos (A-B)]^2\geq 0\)
\(\cos ^2(A-B)\leq 1\) (tính chất hàm cos)
\(\Rightarrow \cos 2A+\cos 2B+\cos 2C\geq 2.0-\frac{1}{2}.1-1=\frac{-3}{2}\)
Ta có đpcm.
\(cos2A+cos2B+cos2c+\dfrac{3}{2}\le0\)
\(\Leftrightarrow2cos\left(A+B\right)cos\left(A-B\right)+2cos^2C-1+\dfrac{3}{2}\le0\)
\(\Leftrightarrow-2cosC.cos\left(A-B\right)+2cos^2C+\dfrac{1}{2}\le0\)
\(\Leftrightarrow4cos^2C-4cosC.cos\left(A-B\right)+cos^2\left(A-B\right)-cos^2\left(A-B\right)+1\le0\)
\(\Leftrightarrow\left[2cosC-cos\left(A-B\right)\right]^2+sin^2\left(A-B\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2cosC-cos\left(A-B\right)=0\\sin\left(A-B\right)=0\end{matrix}\right.\)
\(\Rightarrow A=B=C\)
\(\Rightarrow\Delta ABC\) đều
B là đáp án đúng
cos2a+cos2b+cos2c=1
\(\Leftrightarrow\)(cos2a+cos2b)+(cos2c-1)=0
\(\Leftrightarrow\)2cos(a+b)cos(a-b)+2cos2c=0
\(\Leftrightarrow\)2cos(180-c)cos(a-b)+2cos2c=0
\(\Leftrightarrow\)-2cosccos(a-b)+2cos2c=0
\(\Leftrightarrow\)-2cosc[cos(a-b)-cosc]=0
\(\Leftrightarrow\)-2cosc[cos(a-b)+cos(180-c)]=0
\(\Leftrightarrow\)-2cosc[cos(a-b)+cos(a+b)]=0
\(\Leftrightarrow\)-2cosc(2cosacosb)=0
\(\Rightarrow\) một trong ba giá trị cosc cosb cosa bằng 0\(\Rightarrow\) abc là tam giác vuông
đây là nếu đề của bạn là ...=1 còn nếu là ...=-1 thì mình không biết cách giải!
a)
\(cosA=\sqrt{cosA^2}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AC}\cdot\frac{AE}{AB}}\le\frac{\frac{AF}{AC}+\frac{AE}{AB}}{2}\)(BDT AM-GM)
Tương tự ta có:
\(cosB\le\frac{\frac{BE}{BA}+\frac{BD}{BC}}{2};cosC\le\frac{\frac{CD}{CB}+\frac{CF}{CA}}{2}\)
\(\Rightarrow VT\le\frac{\frac{CF+AF}{AC}+\frac{AE+BE}{AB}+\frac{BD+DC}{BC}}{2}=\frac{1+1+1}{2}=\frac{3}{2}\)
Cách khác
CHo Tam giác ABC, M là 1 điểm bất kì nằm trong tam giác
Đặt x1=MA;x2=MB;x3=MC và p1;p2;p3 lần lượt là khoảng cách từ M đến BC,CA,AB tương ứng. Khi đó ta có BĐT \(x_1+x_2+x_3\ge2\left(p_1+p_2+p_3\right)\)
Vận dụng giải bài trên:
Gọi O,R là tâm và bán kính đg tròng ngoại tiếp Tam giá ABC
Gọi M,N,P lần lượt là trung điểm của cạnh AB,BC,CA
Dễ thấy \(^{\widehat{A}=\widehat{MOB}}\).Do đó:
\(cosA=cos\left(\widehat{MOB}\right)=\frac{OM}{OB}=\frac{OM}{R}\)
tương tự \(cosB=\frac{ON}{R};cosC=\frac{OP}{R}\)
Do đó \(cosA+cosB+cosC=\frac{OM+ON+OP}{T}\le\frac{1}{2}\left(\frac{OA+OB+OC}{R}\right)=\frac{3}{2}\) (BĐT erdos-mordell )
Dấu "=" khi tam giác ABC đều
Ta có:
\(\Delta AIK\sim\Delta ABC\left(g.g\right)\Rightarrow\frac{S_{AIK}}{S_{ABC}}=\left(\frac{AI}{AB}\right)^2=c\text{os}^2A\).
Tương tự: \(\frac{S_{BHK}}{S_{ABC}}=c\text{os}^2B;\frac{S_{CIH}}{S_{ABC}}=c\text{os}^2C\).
Do đó: \(\frac{S_{HIK}}{S_{ABC}}=1-c\text{os}^2A-c\text{os}^2B-c\text{os}^2C\Rightarrow...\Rightarrow\text{đ}pcm\)