Cho 2a +b / 5 thuộc Z <=> 3a-b/5 thuộc Z
( Với a;b thuộc Z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{2a+b}{5}\in Z\left(a,b\in Z\right)\)
\(\Rightarrow2a+b⋮5\Rightarrow\left\{{}\begin{matrix}2a⋮5\\b⋮5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a⋮5\\b⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a⋮5\\b⋮5\end{matrix}\right.\)
Suy ra: \(3a-b⋮5\)
Hay: \(\dfrac{3a-b}{5}\in Z\left(a,b\in Z\right)\)
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
1/
a/ \(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Vì a(a+1)(a+2) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2,3) = 1 nên a(a+1)(a+2) chia hết cho 6. Ta có đpcm
b/ Đề sai , giả sử với a = 3
c/ \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1>0\)
d/ \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
e/ \(-x^2+4x-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1< 0\)
2/ a/ \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)
BT đạt giá trị nhỏ nhất bằng 2 tại x = 3
b/ \(-x^2+6x-11=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\)
BT đạt giá trị lớn nhất bằng -2 tại x = 3
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
a)
ta có:
a(2a - 3) - 2a(a + 1)
= 2a2 - 3a - 2a2 - 2a
= -5a \(⋮\) 5
b)
ta có:
x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1
vì (x + 1)2 \(\ge0\forall x\in R\)
\(\Rightarrow\) (x + 1)2 +1 \(\ge1\) > 0 \(\forall x\in R\)
Vậy (x + 1)2 +1 > 0 \(\forall x\in R\)
Hay x2 + 2x + 2 > 0 \(\forall x\in R\)
Viết rõ đề đi bạn