a)2(x+y)×√1/x^2+2xy+y^2 với x+y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(x,y>0\). Áp dụng BĐT AM-GM, ta có:
\(x^4+y^2\ge2x^2y\)
\(\Rightarrow x^4+y^2+2xy^2\ge2x^2y+2xy^2=2xy\left(x+y\right)\)
\(\Rightarrow\frac{1}{x^4+y^2+2xy^2}\le\frac{1}{2xy\left(x+y\right)}\)(đpcm)
BĐT Vasc cơ bản:
Cho các số dương \(abc=1\) thì:
\(\sum\frac{1}{a^2+a+1}\ge1\)
Chứng minh:
Đặt \(\left\{{}\begin{matrix}a=\frac{yz}{x^2}\\b=\frac{xz}{y^2}\\c=\frac{xy}{z^2}\end{matrix}\right.\) thì BĐT trở thành:
\(\sum\frac{x^4}{x^4+x^2yz+y^2z^2}\ge1\Rightarrow\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+y^2xz+z^2xy+x^2y^2+y^2z^2+z^2x^2}\ge1\)
Nhân chéo và thực hiện khai triển:
\(\left(x^2+y^2+z^2\right)^2=x^4+y^4+z^4+2x^2y^2+2y^2z^2+2x^2z^2\)
Sau đó rút gọn ta được:
\(x^2y^2+y^2z^2+x^2z^2\ge x^2yz+y^2xz+z^2xy\)
BĐT trên chính là dạng \(a^2+b^2+c^2\ge ab+ac+bc\)
Vậy BĐT đã được chứng minh xong
a. Ta có : \(4x^2-6x+9=4x^2-6x+\dfrac{9}{4}+\dfrac{27}{4}\)
\(=\left[\left(2x\right)^2-6x+\left(\dfrac{3}{2}\right)^2\right]+\dfrac{27}{4}\)
\(=\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\)
Vì \(\left(2x-\dfrac{3}{2}\right)^2\ge0\forall x\)
nên \(\left(2x-\dfrac{3}{2}\right)^2+\dfrac{27}{4}\ge\dfrac{27}{4}>0\forall x\)
b.Ta có : \(x^2+2y^2-2xy+y+1=\left(x^2+y^2-2xy\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}\)
\(=\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(y+\dfrac{1}{2}\right)^2\ge0\forall y\)
nên \(\left(x-y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\forall x;y\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(x^2+y^2-2xy+x-y+1=\left(x-y\right)^2+\left(x-y\right)+1\)
Đặt x-y=t
ta có: \(t^2+t+1=\left(t+\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall t\)
=> \(x^2+y^2-2xy+x-y+1>0,\forall x,y\)
\(x^2+y^2-2xy+x-y+1\)\(\left(x-y\right)^2+x-y+1\)
\(\left(x-y\right)=t\Rightarrow t^2-t+1=t^2-2.\frac{1}{2}t+\frac{1}{4}+\frac{3}{4}=\left(t-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
\(x^2+y^2-2xy+x-y+1\)
\(=\left(x^2-2xy+y^2\right)+\left(x-y\right)+1\)
\(=\left(x-y\right)^2+2\cdot\left(x-y\right)\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(=\left(x-y+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x;y\)
P.s: cách này dễ hiểu hơn cách của Nguyễn Hưng Phát
\(=2\left(x+y\right)\cdot\dfrac{1}{\left(x+y\right)}=2\)