TÌM TXĐ:
a. y=\(\dfrac{cos2x}{1-sin2x}\)
b. y= cosx- tan(4x+\(\dfrac{\pi}{3}\)) +5
c. y=cos\(\dfrac{x}{3}\)- \(\dfrac{3}{1+sin2x}\)+ \(\dfrac{2}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tính sin2x, cos2x, tan2x và cot2x, chúng ta cần biết giá trị của cosx trước đã. Theo như bạn đã cho, cosx = -1/4. Vậy sinx sẽ bằng căn bậc hai của 1 - cos^2(x) = căn bậc hai của 1 - (-1/4)^2 = căn bậc hai của 1 - 1/16 = căn bậc hai của 15/16 = sqrt(15)/4. Sau đó, chúng ta có thể tính các giá trị khác như sau: sin2x = (2sinx*cosx) = 2 * (sqrt(15)/4) * (-1/4) = -sqrt(15)/8 cos2x = (2cos^2(x) - 1) = 2 * (-1/4)^2 - 1 = 2/16 - 1 = -14/16 = -7/8 tan2x = sin2x/cos2x = (-sqrt(15)/8) / (-7/8) = sqrt(15) / 7 cot2x = 1/tan2x = 7/sqrt(15) b) Để tính sin(x + 5π/6), chúng ta có thể sử dụng công thức sin(a + b) = sin(a)cos(b) + cos(a)sin(b). Với a = x và b = 5π/6, ta có: sin(x + 5π/6) = sin(x)cos(5π/6) + cos(x)sin(5π/6) = sin(x)(-sqrt(3)/2) + cos(x)(1/2) = (-sqrt(3)/2)sin(x) + (1/2)cos(x) c) Để tính cos(π/6 - x), chúng ta sử dụng công thức cos(a - b) = cos(a)cos(b) + sin(a)sin(b). Với a = π/6 và b = x, ta có: cos(π/6 - x) = cos(π/6)cos(x) + sin(π/6)sin(x) = (√3/2)cos(x) + 1/2sin(x) d) Để tính tan(x + π/3), chúng ta có thể sử dụng công thức tan(a + b) = (tan(a) + tan(b))/(1 - tan(a)tan(b)). Với a = x và b = π/3, ta có: tan(x + π/3) = (tan(x) + tan(π/3))/(1 - tan(x)tan(π/3))
a: pi/2<x<pi
=>sin x>0
=>\(sinx=\sqrt{1-\left(-\dfrac{1}{4}\right)^2}=\dfrac{\sqrt{15}}{4}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{\sqrt{15}}{4}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{15}}{8}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{16}-1=-\dfrac{7}{8}\)
\(tan2x=-\dfrac{\sqrt{15}}{8}:\dfrac{-7}{8}=\dfrac{\sqrt{15}}{7}\)
\(cot2x=1:\dfrac{\sqrt{15}}{7}=\dfrac{7}{\sqrt{15}}\)
b: sin(x+5/6pi)
=sinx*cos(5/6pi)+cosx*sin(5/6pi)
\(=\dfrac{\sqrt{15}}{4}\cdot\dfrac{-\sqrt{3}}{2}+\dfrac{1}{2}\cdot\dfrac{-1}{4}=\dfrac{-\sqrt{45}-1}{8}\)
c: cos(pi/6-x)
=cos(pi/6)*cosx+sin(pi/6)*sinx
\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{-1}{4}+\dfrac{1}{2}\cdot\dfrac{\sqrt{15}}{4}=\dfrac{-\sqrt{3}+\sqrt{15}}{8}\)
d: tan(x+pi/3)
\(=\dfrac{tanx+tan\left(\dfrac{pi}{3}\right)}{1-tanx\cdot tan\left(\dfrac{pi}{3}\right)}\)
\(=\dfrac{-\sqrt{15}+\sqrt{3}}{1+\sqrt{15}\cdot\sqrt{3}}=\dfrac{-\sqrt{15}+\sqrt{3}}{1+3\sqrt{5}}\)
a: 3/2pi<x<2pi
=>sin x<0
=>\(sinx=-\sqrt{1-\left(\dfrac{1}{6}\right)^2}=-\dfrac{\sqrt{35}}{6}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{6}\cdot\dfrac{-\sqrt{35}}{6}=\dfrac{-\sqrt{35}}{18}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{1}{36}-1=\dfrac{1}{18}-1=\dfrac{-17}{18}\)
\(tan2x=\dfrac{-\sqrt{35}}{18}:\dfrac{-17}{18}=\dfrac{\sqrt{35}}{17}\)
\(cot2x=1:\dfrac{\sqrt{35}}{17}=\dfrac{17}{\sqrt{35}}\)
b: \(sin\left(\dfrac{pi}{3}-x\right)\)
\(=sin\left(\dfrac{pi}{3}\right)\cdot cosx-cos\left(\dfrac{pi}{3}\right)\cdot sinx\)
\(=\dfrac{1}{2}\cdot\dfrac{-\sqrt{35}}{6}-\dfrac{1}{2}\cdot\dfrac{1}{6}=\dfrac{-\sqrt{35}-1}{12}\)
c: \(cos\left(x-\dfrac{3}{4}pi\right)\)
\(=cosx\cdot cos\left(\dfrac{3}{4}pi\right)+sinx\cdot sin\left(\dfrac{3}{4}pi\right)\)
\(=\dfrac{1}{6}\cdot\dfrac{-\sqrt{2}}{2}+\dfrac{-\sqrt{35}}{6}\cdot\dfrac{\sqrt{2}}{2}=\dfrac{-\sqrt{2}-\sqrt{70}}{12}\)
d: tan(pi/6-x)
\(=\dfrac{tan\left(\dfrac{pi}{6}\right)-tanx}{1+tan\left(\dfrac{pi}{6}\right)\cdot tanx}\)
\(=\dfrac{\dfrac{\sqrt{3}}{3}-\sqrt{35}}{1+\dfrac{\sqrt{3}}{3}\cdot\left(-\sqrt{35}\right)}\)
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
1. Hàm số xác định `<=> 1-cosx \ne 0<=>cosx \ne 1<=>x \ne k2π`
Vì: `1+cosx >=0 forallx ; 1-cosx >=0 forall x`
2. Hàm số xác định `<=> sin^2x \ne cos^2x <=> (1-cos2x)/2 \ne (1+cos2x)/2`
`<=>cos2x \ne 0<=> 2x \ne π/2+kπ <=> x \ne π/4+kπ/2`
3. Hàm số xác định `<=> cos2x \ne 0<=> x \ne π/4+kπ/2 (k \in ZZ)`.
Bạn cho mình hỏi tại sao x khác k2\(\pi\) là lý thuyết ở đoạn nào thế ạ?
a: pi/2<x<pi
=>cosx<0
=>\(cosx=-\sqrt{1-\left(\dfrac{1}{5}\right)^2}=-\dfrac{2\sqrt{6}}{5}\)
\(sin2x=2\cdot sinx\cdot cosx=2\cdot\dfrac{1}{5}\cdot\dfrac{-2\sqrt{6}}{5}=\dfrac{-4\sqrt{6}}{25}\)
\(cos2x=2\cdot cos^2x-1=2\cdot\dfrac{24}{25}-1=\dfrac{48}{25}-1=\dfrac{23}{25}\)
\(tan2x=-\dfrac{4\sqrt{6}}{25}:\dfrac{23}{25}=-\dfrac{4\sqrt{6}}{23}\)
\(cot2x=1:\dfrac{-4\sqrt{6}}{23}=\dfrac{-23}{4\sqrt{6}}\)
b: \(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)
\(=sinx\cdot\dfrac{\sqrt{3}}{2}-cosx\cdot\dfrac{1}{2}\)
\(=\dfrac{1}{5}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{-2\sqrt{6}}{5}\cdot\dfrac{1}{2}=\dfrac{\sqrt{3}+2\sqrt{6}}{10}\)
c: \(cos\left(x-\dfrac{pi}{3}\right)=cosx\cdot cos\left(\dfrac{pi}{3}\right)+sinx\cdot sin\left(\dfrac{pi}{3}\right)\)
\(=-\dfrac{2\sqrt{6}}{5}\cdot\dfrac{1}{2}+\dfrac{1}{5}\cdot\dfrac{1}{2}=\dfrac{-2\sqrt{6}+1}{10}\)
d: \(tan\left(x-\dfrac{pi}{4}\right)=\dfrac{tanx-tan\left(\dfrac{pi}{4}\right)}{1+tanx\cdot tan\left(\dfrac{pi}{4}\right)}\)
\(=\dfrac{tanx-1}{1+tanx}\)
\(=\dfrac{\dfrac{1}{-2\sqrt{6}}-1}{1+\dfrac{1}{-2\sqrt{6}}}=\dfrac{-25-4\sqrt{6}}{23}\)
a: ĐKXĐ: 2*sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)
mà 1+cosx>=0
nên 2-cosx>=0
=>cosx<=2(luôn đúng)
c ĐKXĐ: tan x>0
=>kpi<x<pi/2+kpi
d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)
=>cos(x-pi/4)<>1/2
=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi
=>x<>7/12pi+k2pi và x<>-pi/12+k2pi
e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi
=>x<>5/6pi+kpi và x<>kpi-pi/4
f: ĐKXĐ: cos^2x-sin^2x<>0
=>cos2x<>0
=>2x<>pi/2+kpi
=>x<>pi/4+kpi/2
a/ Điều kiện: 1 - sin2x \(\ne\) 0
<=> sin2x \(\ne1\)
<=> \(x\ne\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)
TXĐ: D = R\ {\(\dfrac{\pi}{4}+k\dfrac{\pi}{2}\)}
b. ĐKXĐ cos(4x+\(\dfrac{\pi}{3}\)) \(\ne\)0 => 4x+\(\dfrac{\pi}{3}\)= \(\dfrac{\pi}{2}\)+k\(\pi\) => x=\(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z
==> TXĐ: D= R\ { \(\dfrac{\pi}{24}\)+k\(\dfrac{\pi}{4}\),k\(\in\)Z }