K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
1. Tìm những cặp số (x,y) thoả mãn pt: a) x² - 4x +y - 6√(y) + 13 = 0 b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên...
Đọc tiếp

1. Tìm những cặp số (x,y) thoả mãn pt: 
a) x² - 4x +y - 6√(y) + 13 = 0 
b) (xy²)² - 16xy³ + 68y² -4xy + x² = 0 
c) x² - x²y - y + 8x + 7 = 0 ngiệm (x,y) nào đạt y max 
2. Giả sử x1, x2 là nghiệm của pt: x² - 6x + 1 =0. CM với mọi số nguyên dương n thì S(n) = x1ⁿ +x2ⁿ là số nguyên và không chia hết cho 5 
3. Cho f(x) là một đa thức tuỳ ý với các hệ số nguyên. CM: f(a) - f(b) chia hết (a - b) với mọi số nguyên a,b 
4. Chứng minh tồn tại đa thức p(x) với hệ số nguyên thoả p(3) = 10, p(7) = 24 
5. Giả sử x, y, z là những số tự nhiên thoả x² + y² = z². Chứng minh xyz chia hết cho 60 
6. Cho x,y,z là các số nguyên thoả (x-y)(y-z)(z-x) = x + y + z. CM: x +y + z chia hết cho 27 
7. Với 4 số nguyên a,b,c,d .CM:(a-b)(a-c)(a-d)(b-c)(b-d)(c-d) chia hết cho 12. 
8. Chứng minh nếu a² + b² chia hết cho 21 thì cũng chia hết cho 441 
9. Tìm tất cả số nguyên tố vừa là tổng của 2 số nguyên tố, vừa là hiệu của 2 số nguyên tố 
10. Viết số 100 thành tổng các số nguyên tố khác nhau 
11. Tìm các nghiệm nguyên dương x! + y! = (x + y)! 
12. Tìm các số tự nhiên n sao cho 2ⁿ +3ⁿ = 35 
13. Tìm 3 số nguyên dương sao cho tích của chúng gấp đôi tổng của chúng 
14. Tìm 4 số nguyên dương sao cho tổng và tích của chúng bằng nhau (Tương tự với 3 số nguyên dương) 
15. Tìm 3 số nguyên dương x,y,z sao cho xy + 1 chia hết cho z; xz +1 chia hết cho y; yz + 1 chia hết cho x 
16. a) CM x² + y² = 7z² 
b) CM số 7 ko viết được dưới dạng tổng bình phương của 2 số hửu tỉ

0
2 tháng 3 2022

guyrt8yfjgdfjvxkfjghdgfkg123456781548656

3 tháng 11 2023

Giả sử x;y;z đều chẵn

\(\Rightarrow x=2a;y=2b;z=2c\Rightarrow xyz=8abc⋮4\)

Nếu x;y;z đều lẻ => (x-y); (y-z); (z-x) chẵn

\(\Rightarrow\left(x-y\right)=2a;\left(y-z\right)=2b;\left(z-x\right)=2c\)

\(\Rightarrow\left(x-y\right)\left(y-z\right)\left(z-x\right)=8abc⋮4\)

Nếu trong 3 số x;y;z có ít nhất 1 số lẻ giả sử x lẻ  

=> xyz chẵn và \(xyz=2a\)

=> (y-z) chẵn và \(y-z=2b\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)=\)

\(=2a.\left(x-y\right).2b.\left(z-x\right)=4ab\left(x-y\right)\left(z-x\right)⋮4\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮4\forall x;y;z\)

Nếu 1 trong 3 số x; y; z chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

Nếu không có số nào chia hết cho 3 ta có một số khi chia cho 3 dư 1 hoặc 2 => trong 3 số có 2 số đồng dư

=> 1 trong 3 số (x-y); (y-z); (z-x) có 1 số chia hết cho 3

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\)

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3\forall x;y;z\)

Mà 3 và 4 là 2 số nguyên tố cùng nhau

\(\Rightarrow xyz\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮3.4=12\forall x;y;z\)

 

 

24 tháng 6 2018

6   \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)

\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)

vì n,n-1 là 2 số nguyên lien tiếp  \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)

  n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)

\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)

7   \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)

\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)

n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)

\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)

\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)

\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)

\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

21 tháng 1 2019

Bài 1:

x5y-xy5=xy(x4-y4)=xy(x4-1+y4+1)

=xy(x4-1)-xy(y4-1)=xy(x2-1)(x2+1)-xy(y2-1)(y2+1)

=xy(x-1)(x+1)(x2+1)-xy(y-1)(y+1)(y2-1)

Mà:xy(x-1)(x+1)(x2+1) chia hết 2;3;5

=>xy(x-1)(x+1)(x2+1) chia hết cho 30

Cmtt:xy(y-1)(y+1)(y2+1) chia hết cho 30

Nên x5y-xy5 chia hết cho 30

21 tháng 1 2019

Bài 2:

       x2+y2+z2=y(x+z)

<=>x2+y2+z2-yx-yz=0

<=>2x2+2y2+2z2-2yx-2yz=0

<=>(x – y)2 + (y – z)2 + x2 + z2 = 0

<=>x – y = y – z = x = z = 0

<=>x=y=z=0

DD
29 tháng 1 2021

Ta có: \(mn\left(m^{30}-n^{30}\right)=mn\left[\left(m^{30}-1\right)-\left(n^{30}-1\right)\right]=nm\left(m^{30}-1\right)-mn\left(n^{30}-1\right)\)

Do đó, nếu ta chứng minh được với mọi số nguyên dương \(k\)thì \(k\left(k^{30}-1\right)⋮14322\)thì ta sẽ có đpcm. 

Ta có: \(14322=2.3.7.11.31\).

Xét \(p\in\left\{2,3,7,11,31\right\}\). Nếu \(k\)chia hết cho \(p\)thì hiển nhiên \(k\left(k^{30}-1\right)\)chia hết cho \(p\). Nếu \(k\)không chia hết cho \(p\)thì \(k\)nguyên tố với \(p\). Theo định lí Fermat nhỏ, ta có:  \(k^{p-1}-1⋮p\).

Mặt khác, với mọi \(p\in\left\{2,3,7,11,31\right\}\)ta có \(\left(p-1\right)|30\).

Từ đó suy ra: \(k^{30}-1⋮p\).

Do vậy \(k\left(k^{30}-1\right)⋮p\)với mọi \(p\in\left\{2,3,7,11,31\right\}\).

Vậy \(k\left(k^{30}-1\right)⋮14322\).

Từ đây ta có đpcm.