Cho tam giac ABD có góc A=90° Vẽ dg cao AH .Gọi M là đ đối xứng vs A qua H trên HM lấy E bất kỳ qua D kẻ dg thg vuog góc vs BE tại C và giao nhau tai F
a)Cmr AH^2=BH.HD=HE.HF
b)AF\AE=MF\ME
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh tam giác AHB đồng dạng tam giác DHA => AH^2=BH.HD
Chứng minh tam giác BEH đồng dạng tam giác FEC
Chứng minh tam giác FEC đồng dạng tam giác FDH
=> Tam giác BEH đồng dạng tam giác FDH
=> HE.HF=BH.HD
Đã có một lời giải mình đăng cho bạn về tính chất của hàng điều hoà rồi đó.
Điều cần CM tương đương với \(A,E,M,F\) là hàng điều hoà, lại thêm \(H\) trung điểm \(AM\) nên chỉ cần CM:
\(HA^2=HE.HF\).
Ta có \(HA^2=HB.HC\) còn \(HB.HC=HE.HF\) là do tam giác \(BHE\) và \(FHC\) đồng dạng.
Để mình suy nghĩ thêm coi có cách nào không dùng hàng điều hoà không.