Rút gọn: D= \(\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có : \(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
= \(\frac{\left(a-1\right)\left(a+1\right)\left(a-4\right)}{\left(a-4\right)\left(a-2\right)\left(a-1\right)}\)
= \(\frac{a+1}{a-2}\)
nhớ nha
\(\frac{a^3-4a^2-a+a}{a^3-7a^2+14a-8}=\frac{a^3-4a^2}{a^3-4a^2-3a^2+12a+2a-8}\)
\(=\frac{a^2\left(a-4\right)}{a^2\left(a-4\right)-3a\left(a-4\right)+2\left(a-4\right)}=\frac{a^2\left(a-4\right)}{\left(a-4\right)\left(a^2-3a+2\right)}\)
\(=\frac{a^2}{a^2-3a+2}=\frac{a^2}{a\left(a-2\right)-\left(a-2\right)}=\frac{a^2}{\left(a-2\right)\left(a-1\right)}\)
Ủng hộ mik nhé!!!!
P=\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{\left(a^3-4a^2\right)-\left(a-4\right)}{\left(a^3-8\right)-\left(7a^2-14a\right)}\)
\(=\frac{a^2\left(a-4\right)-\left(a-4\right)}{\left(a-2\right)\left(a^2+2a+4\right)-7a\left(a-2\right)}\)
\(=\frac{\left(a-4\right)\left(a^2-1\right)}{\left(a-2\right)\left(a^2-5a+4\right)}\)
\(=\frac{\left(a-4\right)\left(a^2-1\right)}{\left(a-2\right)\left(\left(a^2-4a\right)-\left(a-4\right)\right)}\)
\(=\frac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-2\right)\left(a\left(a-4\right)-\left(a-4\right)\right)}\)
\(=\frac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-2\right)\left(a-4\right)\left(a-1\right)}\)
\(=\frac{a+1}{a-2}\)
Chúc bạn học giỏi, k cho mình nhé!!!
\(P=\frac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-4\right)\left(a-2\right)\left(a-1\right)}=\frac{a+1}{a-1}=1+\frac{2}{a-1}\text{ }\left(a\ne4;2;1\right)\)
P nguyên khi \(\frac{2}{a-1}\) nguyên
\(\Rightarrow a-1\in\text{Ư}\left(2\right)=\left\{-2;2;1;-1\right\}\)
\(\Rightarrow a\in\left\{-1;3;2;0\right\}\)
\(\Rightarrow a\in\left\{-1;0;3\right\}\text{ }\left(\text{do }a\ne2\right)\)
Bạn ơi
Mình hoàn toàn đồng ý từ đầu bài nhưng đến phần bạn rút gọn là \(\frac{a+1}{a-1}\)mình thấy sai sai
Đáng nhẽ là \(\frac{a+1}{a-2}\)chứ bạn
Có \(\text{VT }=\) \(\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
\(\Rightarrow VT=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{\left(a-2\right)\left(a^2+2a+4\right)-7a\left(a-2\right)}\)
\(\Rightarrow VT=\dfrac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-2\right)\left(a^2-5a+4\right)}\)
\(\Rightarrow VT=\dfrac{\left(a+1\right)\left(a^2-5a+4\right)}{\left(a-2\right)\left(a^2-5a+4\right)}\)
\(\Rightarrow\dfrac{a+1}{a-2}\)
\(\Rightarrow VT=VP\)
\(\Rightarrowđpcm\)
Lời giải:
1.
\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a^2(a-4)-(a-4)}{(a^3-8)-(7a^2-14a)}=\frac{(a-4)(a^2-1)}{(a-2)(a^2+2a+4)-7a(a-2)}\)
\(=\frac{(a-4)(a-1)(a+1)}{(a-2)(a^2-5a+4)}=\frac{(a-4)(a-1)(a+1)}{(a-2)(a-1)(a-4)}=\frac{a+1}{a-2}\)
2.
\(\frac{x^2y^2+1+(x^2-y)(1-y)}{x^2y^2+1+(x^2+y)(1+y)}=\frac{x^2y^2+1+x^2-x^2y-y+y^2}{x^2y^2+1+x^2+x^2y+y+y^2}\)
\(=\frac{(x^2y^2-x^2y+x^2)+(y^2-y+1)}{(x^2y^2+x^2y+x^2)+(y^2+y+1)}\)
\(=\frac{x^2(y^2-y+1)+(y^2-y+1)}{x^2(y^2+y+1)+(y^2+y+1)}=\frac{(x^2+1)(y^2-y+1)}{(x^2+1)(y^2+y+1)}=\frac{y^2-y+1}{y^2+y+1}\)
Lời giải:
ĐK....................
a)
\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)
\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)
b)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)
\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)
Lời giải:
ĐK....................
a)
\(\frac{a^3-4a^2-a+4}{a^3-7a^3+14a-8}=\frac{(a^3-4a^2)-(a-4)}{(a^3-4a^2)-(3a^2-12a)+(2a-8)}=\frac{a^2(a-4)-(a-4)}{a^2(a-4)-3a(a-4)+2(a-4)}\)
\(=\frac{(a-4)(a^2-1)}{(a-4)(a^2-3a+2)}=\frac{a^2-1}{a^2-3a+2}=\frac{(a-1)(a+1)}{(a-1)(a-2)}=\frac{a+1}{a-2}\) (đpcm)
b)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{(x^4+x^3)+(x+1)}{(x^4+x^2)-(x^3+x)+x^2+1}=\frac{x^3(x+1)+(x+1)}{x^2(x^2+1)-x(x^2+1)+(x^2+1)}=\frac{(x+1)(x^3+1)}{(x^2+1)(x^2-x+1)}\)
\(=\frac{(x+1)(x+1)(x^2-x+1)}{(x^2+1)(x^2-x+1)}=\frac{(x+1)^2}{x^2+1}\) (đpcm)
\(D=\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
\(=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{a^3-4a^2-3a^2+12a+2a-8}\)
\(=\dfrac{\left(a^2-1\right)\left(a-4\right)}{a^2\left(a-4\right)-3a\left(a-4\right)+2\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)\left(a-4\right)}{\left(a^2-3a+2\right)\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a^2-2a-a+2}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a\left(a-2\right)-\left(a-2\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)\left(a-2\right)}=\dfrac{a+1}{a-2}\)
Vậy...