Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-4\right)\left(a-2\right)\left(a-1\right)}=\frac{a+1}{a-1}=1+\frac{2}{a-1}\text{ }\left(a\ne4;2;1\right)\)
P nguyên khi \(\frac{2}{a-1}\) nguyên
\(\Rightarrow a-1\in\text{Ư}\left(2\right)=\left\{-2;2;1;-1\right\}\)
\(\Rightarrow a\in\left\{-1;3;2;0\right\}\)
\(\Rightarrow a\in\left\{-1;0;3\right\}\text{ }\left(\text{do }a\ne2\right)\)
Bạn ơi
Mình hoàn toàn đồng ý từ đầu bài nhưng đến phần bạn rút gọn là \(\frac{a+1}{a-1}\)mình thấy sai sai
Đáng nhẽ là \(\frac{a+1}{a-2}\)chứ bạn
a,\(ab^2\sqrt{\dfrac{3}{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{\sqrt{a^2b^4}}=ab^2.\dfrac{\sqrt{3}}{ab^2}=\sqrt{3}\)
b,\(\sqrt{\dfrac{27\left(a-3\right)^2}{48}}=\dfrac{3\sqrt{3}\left(a-3\right)}{4\sqrt{3}}=\dfrac{3}{4}\left(a-3\right)\)
c,\(\sqrt{\dfrac{9+12a+4a^2}{b^2}}=\dfrac{\sqrt{\left(3+2a\right)^2}}{\sqrt{b^2}}=\dfrac{3+2a}{b}\)
d, \(\left(a-b\right).\sqrt{\dfrac{ab}{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\sqrt{\left(a-b\right)^2}}=\left(a-b\right).\dfrac{\sqrt{ab}}{\left(a-b\right)}=\sqrt{ab}\)
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}\)
\(=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
b) đề sai rồi nha
c) \(\dfrac{a\sqrt{a}-8+2a-4\sqrt{a}}{a-4}=\dfrac{a\sqrt{a}-4\sqrt{a}+2a-8}{a-4}\)
\(=\dfrac{\sqrt{a}\left(a-4\right)+2\left(a-4\right)}{a-4}=\dfrac{\left(\sqrt{a}+2\right)\left(a-4\right)}{a-4}=\sqrt{a}+2\)
\(a.\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-4}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\sqrt{2}-4}=\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{-2\sqrt{2}\left(\sqrt{2}-1\right)}=-\dfrac{\sqrt{3}}{2}\)
\(b.\dfrac{a^2\sqrt{b}-\sqrt{ab^3}}{\sqrt{a^3b^2}-b^2}=\dfrac{a^2\sqrt{b}-b\sqrt{ab}}{ab\sqrt{a}-b^2}=\dfrac{\sqrt{ab}\left(a\sqrt{a}-b\right)}{b\left(a\sqrt{a}-b\right)}=\sqrt{\dfrac{a}{b}}\left(a;b>0\right)\)
\(c.\dfrac{a^3-2\sqrt{2}}{a-\sqrt{2}}=\dfrac{\left(a-\sqrt{2}\right)\left(a^2+a\sqrt{2}+2\right)}{a-\sqrt{2}}=a^2+a\sqrt{2}+2\left(a\ne\sqrt{2}\right)\)
\(d.\sqrt{18}-\sqrt{8}+\dfrac{1}{4}\sqrt{2}=3\sqrt{2}-2\sqrt{2}+\dfrac{1}{4}\sqrt{2}=\left(\dfrac{1}{4}+1\right)\sqrt{2}=\dfrac{5}{4}\sqrt{2}\)
a) ...= \(\dfrac{1}{4}\).\(6\sqrt{5}\) +\(2\sqrt{5}\) - \(3\sqrt{5}\) +5
= \(\dfrac{3}{2}\sqrt{5}\) -\(\sqrt{5}\) +5
=5 - \(\dfrac{1}{2}\sqrt{5}\)
d) ...= \(\sqrt{\dfrac{a}{\left(1+b\right)^2}}\) . \(\sqrt{\dfrac{4a\left(1+b\right)^2}{15^2}}\)
= \(\sqrt{\dfrac{4a^2\left(1+b\right)^2}{\left(1+b\right)^2.15^2}}\) = \(\sqrt{\dfrac{4a^2}{15^2}}\)= \(\dfrac{2a}{15}\)
a) \(\sqrt{7+4\sqrt{3}}=\sqrt{2^2+2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}=2+\sqrt{3}\)
b) \(\sqrt{13-4\sqrt{3}}=\sqrt{\left(2\sqrt{3}\right)^2-2.2\sqrt{3}+1}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}=2\sqrt{3}-1\)
c) \(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
d) \(\sqrt{3+2\sqrt{2}+\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{3+2\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}}\)
\(=\sqrt{3+2\sqrt{2}+2-\sqrt{2}}\)
\(=\sqrt{5+\sqrt{2}}\)
e) \(2+\sqrt{17-4\sqrt{9+4\sqrt{5}}}\)
\(=2+\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}\)
\(=2+\sqrt{17-4\left(\sqrt{5}+2\right)}\)
\(=2+\sqrt{9-4\sqrt{5}}\)
\(=2+\sqrt{\left(\sqrt{5}-2\right)^2}\)
\(=2+\sqrt{5}-2=\sqrt{5}\)
f) đề sai nhé:
\(\sqrt{3a}.\sqrt{12a}=\sqrt{36a^2}=6a\)\(\left(a\ge0\right)\)
g) \(\sqrt{16a^2b^8}=4b^4\left|a\right|\)
h) \(\sqrt{7a}.\sqrt{63a^3}=\sqrt{441.a^4}=21a^2\)
\(D=\dfrac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}\)
\(=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{a^3-4a^2-3a^2+12a+2a-8}\)
\(=\dfrac{\left(a^2-1\right)\left(a-4\right)}{a^2\left(a-4\right)-3a\left(a-4\right)+2\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)\left(a-4\right)}{\left(a^2-3a+2\right)\left(a-4\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a^2-2a-a+2}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{a\left(a-2\right)-\left(a-2\right)}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{\left(a-1\right)\left(a-2\right)}=\dfrac{a+1}{a-2}\)
Vậy...