Cho đường tròn tâm B và tiếp tuyến CA (A là tiếp điểm), vẽ đường tròn tâm C, bán kính CA cắt (B) tại điểm D (khác A). Chứng minh rằng CD là tiếp tuyến của đường tròn (B)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ Nối MA; MD; ME ta có
^DME=^DMA+^CMA (1)
^DMA=90 (góc nội tiếp chắn nửa đường tròn (B)) (2)
^CMA=90 (góc nội tiếp chắn nửa đường tròn (C)) (3)
Từ (1) (2) (3) => ^DME=90 độ => D, M, E thẳng hàng
Xét hai tam giác ABC và DBC, ta có:
BA = BD (bán kính của (B; BA))
CA = CD (bán kính của (C; CA))
BC chung
Suy ra: ∆ ABC = ∆ DBC (c.c.c)
Suy ra: CD ⊥ BD tại D
Vậy CD là tiếp tuyến của đường tròn (B; BA)
a: BC vuông góc AH tại H
nên BC là tiếp tuyến của (A)
b: Xét (A) có
BH,BE là tiếp tuyến
nên AB là phân giác của góc HAE(1)
Xét (A) có
CF,CH là tiếp tuyến
nên AC là phân giác của góc HAF(2)
Từ (1), (2) suy ra góc FAE=2*90=180 độ
=>F,A,E thẳng hàng
c: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
Ta có: đường tròn (B, BA) và (C, CA)
mà chúng cắt nhau tại D
=> BA = BD ; CA = CD
Xét \(\Delta ABC\) và \(\Delta DBC\) có:
AB = BD (cmt)
AC = CD (cmt)
BC: cạch chúng
\(\Rightarrow\Delta ABC=\Delta DBC\left(c.c.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{D}\)
mà \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{D}=90^o\)
\(\Rightarrow CD\perp\) với bán kính BD tại D
\(\Rightarrow\) CD là tiếp tuyến của đường tròn (B)