Hai số 2^3000 và 5^3000 được viết liên tiếp nhau.Hỏi số tạo thành có tất cả bao nhiêu chữ số?
Giải nhanh cho tui nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải đã có tại đây:
https://hoc24.vn/cau-hoi/hai-so-23000-va-53000-duoc-viet-lien-tiep-nhau-hoi-so-tao-thanh-co-tat-ca-bao-nhieu-chu-so.1210810446694
gọi a là số chữ số của 21991 , b là số chữ số của 51991
ta có: 10a < 21991 < 10a+1
10b < 51991 < 10b+1
=> 10a . 10b < 21991 . 51991 < 10a+1 . 10b +1
=> 10a+b < 101991 < 10a+b+2
=> a + b = 1992
vậy 2 số 21991 và 51991 viết liền nhau tạo ra tất cả 1992 chữ số viết thành số đó
Giả sử : \(2^{2010}\) có k chữ số và \(5^{2010}\) có p chữ số thì số chữ số phải tìm là: k + p \(\left(k+p\right)\inℕ^∗\)
Ta thấy:
\(10^{k-1}< 2^{2010}< 10^k\)
\(10^{p-1}< 5^{2010}< 10^p\)
\(\Rightarrow10^{k+p-2}< 10^{2010}< 10^{k+p}\)
\(\Rightarrow k+p-2< 2010< k+p\)
\(\Rightarrow2010< k+p< 2012\)
Mà: \(\left(k+p\right)\inℕ^∗\)
\(\Rightarrow k+p=2011\)
Vậy : Hai số \(2^{2010}\) và \(5^{2010}\) viết liên tiếp nhau thì có 2011 chữ số.
=.= hok tốt!!