K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Đặt \(a=11x+4\)

\(a^2=\left(11x+4\right)^2=121x^2+88x+16\)

\(=121x^2+88x+11+5\)

\(=11\left(11x^2+8x+1\right)+5\)

\(\Rightarrow a^2\) chia 11 dư 5

Vậy...

25 tháng 6 2017

a chia 11 dư 4 => a có dạng 11k + 4

$=>a^2=(11k+4)^2=121k^2+88k+16=11(11k^2+8k+1)+5$

$=>a^2$ chia 11 dư 5.

27 tháng 6 2017

b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5

27 tháng 6 2017

a)

a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)

Ta có:

\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'

\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2

Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2

b)

a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)

Ta có:

\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'

\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5

Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5

8 tháng 12 2017

sợ thế :)))))))))))) cc 

11 tháng 7 2016

câu 1 sai đề bạn ạ

câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11

11 tháng 7 2016

1.Đề sai

2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N 

Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)

Do đó \(a^2\) chia 11 dư 5

26 tháng 12 2020

chị lười tính lắm em ạ và ko muốn động não