K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2017

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

AB là tia phân giác của góc HAD

\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)

AC là tia phân giác của góc HAE

\(\Rightarrow\widehat{HAD}=\widehat{CAE}\)

Ta có: \(\widehat{HAD}+\widehat{HEA}=2.\left(\widehat{BAH}+\widehat{HAC}\right)=2.\widehat{BAC}=2.90^o=180^o\)

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có: \(AD\downarrow BD;AE\downarrow CE\)

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: \(MA\\ BD\Rightarrow MA\downarrow DE\)

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC

24 tháng 6 2017

a) theo tính chất 2 tiếp tuyến cắt nhau

ta có : DAB = BAH và HAC = CAE

DAH + HAE = 2(BAH + HAC) = 2.90 = 180

vậy D , A , E thẳng hàng

1 tháng 12 2016

ta có góc DAB=BAH( tính chất 2 tt cn) và HAC=EAC (----------------)\

Mà góc BAH +HAC =90o => DAB+EAC=90o TA có DAB+EAC+BAH+HAC =DAE

          =>90o +90o=DAE hay DAE =180o mặt khác D,A,E thẳng hàng

CÒN phần b thì chưa làm

4 tháng 1 2018

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

               AB là tia phân giác của góc HAD  

Suy ra: 
ˆ
D
A
B
=
ˆ
B
A
H
DAB^=BAH^

                  AC là tia phân giác của góc HAE

Suy ra: 
ˆ
H
A
C
=
ˆ
C
A
E
HAC^=CAE^

Ta có: 
ˆ
H
A
D
+
ˆ
H
A
E
=
2
(
ˆ
B
A
H
+
ˆ
H
A
C
)
=
2.
ˆ
B
A
C
=
2.90

=
180

HAD^+HAE^=2(BAH^+HAC^)=2.BAC^=2.90∘=180∘

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

A
D

B
D
;
A
E

C
E
AD⊥BD;AE⊥CE

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: 
M
A
/
/
B
D

M
A

D
E
MA//BD⇒MA⊥DE

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

14 tháng 2 2016

. Bán kính đường tròn ngoại tiếp tam giác ABC có độ dài bằng 15

=>AO=OB=OC=15

xét tam giác AHO vuông tai H

=>HO=căn(15^2-14.4^2)=4.2

=>BH =BO-HO=15-4.2=10.8

Xét tam giác ABH vuông tại H

=>AB=căn(14.4^2+10.8^2)=18

=>BC=2OC=2*15=30

=>AC=căn(30^2-18^2)=24

=>AB+AC=18+24=42

Ta có: ΔABC vuông tại A(gt)

mà ΔBAC nội tiếp (O) 

nên O là trung điểm của BC

Áp dụng hệ thức lượng trong tam giác vuông vào ΔCBD vuông tại B có BA là đường cao ứng với cạnh huyền CD, ta được:

\(CA\cdot CD=CB^2\)

\(\Leftrightarrow CA\cdot CD=\left(2R\right)^2=4R^2\)