Biết độ dài ba đường cao của một tam giác tỉ lệ với \(\frac{1}{5};\frac{1}{6};\frac{1}{7}\) . Tính chu vi của tam giác đó biết rằng cạnh nhỏ nhất ngắn hơn cạnh lớn nhất 14m.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{3+5+6}=\dfrac{42}{14}=3\)
Do đó: a=9; b=15; c=18
Truy cập link để nhận thẻ cào 50k free :
http://123link.vip/7K2YSHxh
Nhanh không cả hết !
lại bắt đầu nè tìm đường cao như bình thường rồi xét đường cao = cạnh => đó là các cạnh bla bla
Gọi chiều cao của tam giác lần lượt là a, b, c
các cạnh của tam giác lần lượt là x, y, z
Ta có: \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}\)
Đặt \(\frac{a}{3}=\frac{b}{5}=\frac{c}{6}=k\left(k\ne0\right)\)\(\Rightarrow a=3k\), \(b=5k\), \(c=6k\)
\(S_{\Delta}=\frac{1}{2}ax=\frac{1}{2}by=\frac{1}{2}cz\)\(\Rightarrow ax=by=cz\)
\(\Rightarrow3k.x=5k.y=6k.z\)\(\Rightarrow3x=5y=6z\)\(\Rightarrow\frac{3x}{30}=\frac{5y}{30}=\frac{6z}{30}=\frac{x}{10}=\frac{y}{6}=\frac{z}{5}=\frac{x+y+z}{10+6+5}=\frac{42}{21}=2\)
\(\Rightarrow x=2.10=20\), \(y=2.6=12\), \(z=2.5=10\)
Vậy độ dài 3 cạnh của tam giác lần lượt là 20 cm, 12 cm, 10 cm
Gọi độ dài ba đường cao lần lượt là a,b,c
Độ dài 3 cạnh tỉ lệ với 2;3;4
=>2a=3b=4c
=>a/6=b/4=c/3
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b+c}{6+4+3}=\dfrac{13}{13}=1\)
=>a=6; b=4; c=3
Lười lắm hướng dẫn giải thôi
gọi 3 cạnh đó là x;y;z ( x;y;z >0 , cm)
vì ba đường cao của tam giác tỉ lệ nghịch với 5;7;8
=> x.5=y.7=z.8
=> \(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{7}}=\frac{z}{\frac{1}{8}}\)
áp dụng t/c dãy tỉ số = nhau rồi cộng 3 cái lại xét x= ? ; y=? ; z=?
cho mình hỏi đề bài người ta nói mình tìm độ dài của 3 cạnh chứ ko phải tìm đường cao