mn ơi giúp em cm rằng : x^2 -y ^2 =21 b) 4x^2 -y^2 =35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=16x^2-y^2-16x^2+8x=8x-y^2\\ A=8\cdot3-\left(-1\right)^2=24-1=23\\ B=64x^3-80x-64x^3-1=-80x-1\\ B=-80\cdot\dfrac{1}{5}-1=-16-1=-17\)
Bạn chú thích hơi quá lố :)
Ta có :( 5x - 3y + 4z ) . ( 5x - 3y - 4z ) \(=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16z^2\)
Mà x^2=y^2 + z^2 nên ( 5x - 3y + 4z ) . ( 5x - 3y - 4z )\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Học tốt !
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
Suy ra :
+) \(\frac{x}{3}=4\Rightarrow x=12\)
+) \(\frac{y}{4}=4\Rightarrow y=16\)
\(\left(x-y+2\right)^2+\left(y-2\right)^2+2\left(x-y\right)+2\left(y-2\right)\)
\(=x^2-2\cdot x\cdot\left(y-2\right)+\left(y-2\right)^2+\left(y-2\right)^2+2\left(x-y\right)+2\left(y-2\right)\)
\(=x^2-2x\left(y-2\right)+2\left(y-2\right)\left(y-2+2\right)+2\left(x-y\right)\)
\(=x^2-2x\left(y-2\right)+2y\left(y-2\right)+2\left(x-y\right)\)
\(=x^2-2\left(y-2\right)\left(x-y\right)+2\left(x-y\right)\)
\(=x^2-2\left(x-y\right)\left(y-2-2\right)\)
Mik thấy ở vế đầu tiên nó hình như bạn bị nhầm thì phải :\(\dfrac{2X}{2X+Y}-\dfrac{3Y}{2X-Y}=1\)
Cho $x=y=1$ thì $x^2-y^2=0$ chứ có bằng $21$ đâu mà chứng minh hả bạn?