Cho x;y là các số thực dương sao cho \(2x+y\) và \(2y+x\) khác 2. Tìm giá trị nhỏ nhất của biểu thức
\(P=\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\dfrac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(x+2y-2\right)^2}-3\left(x+y\right)\)
Ace Legona,Songoku hai bn giúp mk nha
Bài này là bài thi vào lớp 10 hả
Dễ thôi
Ta sẽ C/m:
\(\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}\ge2x+y-\dfrac{1}{2}\)
\(\Leftrightarrow\left(2xy-6x-3y+2\right)^2\ge0\) ( đúng )
C/m tương tự ta được: \(P\ge-1\). Vậy GTNN của P là -1 khi \(x=y=\dfrac{9+\sqrt{65}}{4}\) hoặc \(x=y=\dfrac{9-\sqrt{65}}{4}\)