Tìm số nguyên n
a, 3-2. 34. 3n = 37
b, 2-1. 2n+ 4.2n= 9.25
c, 2. 16 >_ 2n>4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
Câu c/
$6n+2\vdots 2n-1$
$3(2n-1)+5\vdots 2n-1$
$\Rightarrow 5\vdots 2n-1$
$\Rightarrow 2n-1\in Ư(5)$
$\Rightarrow 2n-1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{1; 0; 3; -2\right\}$
Câu a/
$2n-3\vdots n+1$
$2(n+1)-5\vdots n+1$
$5\vdots n+1$
$\Rightarrow n+1\in Ư(5)$
$\Rightarrow n+1\in \left\{1; -1; 5; -5\right\}$
$\Rightarrow n\in \left\{0; -2; 4; -6\right\}$
Bài 2 :
a ) Gọi ƯCLN của 3n + 4 và 2n + 3 là d .
Ta có : 2n + 3 chia hết cho d .
3n + 4 chia hết cho d .
\(\Rightarrow\) 2n . 3 + 3 . 3 chia hết cho d .
3n . 2 + 4 . 2 chia hết cho d .
\(\Rightarrow\) 6n + 9 chia hết cho d .
6n + 8 chia hết cho d .
\(\Rightarrow\) ( 6n + 9 ) - ( 6n + 8 ) chia hết cho d .
\(\Rightarrow\) 1 chia hết cho d .
\(\Rightarrow\) d = 1
b)Gọi ƯCLN( 2n+5, 4n+9) là d
Ta có: 2n + 5 \(⋮\)d
4n + 9 \(⋮\)d
\(\Rightarrow\)2n + 5 . 2 \(⋮\)d
4n + 9 . 1 \(⋮\)d
\(\Rightarrow\)4n + 10 \(⋮\)d
4n + 9 \(⋮\) d
\(\Rightarrow\left(4n+10\right)-\left(4n+9\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy 2n + 5 và 4n + 9 nguyên tố cùng nhau.
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
Mà n là số tự nhiên
⇒ n ∈ {2}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
Mà n là số tự nhiên
⇒ n ∈ {2; 0; 3; 4; 7}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
Mà n là số tự nhiên
⇒ n ∈ {0; 2}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {0; -1; 1/2; -3/2; 1; -2; 5/2; -7/2}
Mà n là số tự nhiên
⇒ n ∈ {0; 1}
a) \(3^{-2}.3^4.3^n=3^7\)
\(\Rightarrow3^{-2}.3^n=3^7:3^4\)
\(\Rightarrow3^{-2+n}=3^3\)
\(\Rightarrow-2+n=3\)
\(\Rightarrow n=3+2=5\)
Vậy \(n=5.\)
b) \(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n\left(2^{-1}+4\right)=9.2^5\)
\(\Rightarrow2^n.9.\dfrac{1}{2}=9.2^5\)
\(\Rightarrow2^n.\dfrac{1}{2}=2^5\)
\(\Rightarrow2^n=2^5.2=2^6\)
\(\Rightarrow n=6.\)
Vậy \(n=6.\)
c) Nhìn cái đề mk chẳng hiểu gì hết, cái dấu sau dấu lớn là dấu gì thế???
a) \(3^{-2}\cdot3^4\cdot3^n=3^7\) (1)
\(\Leftrightarrow3^{n+2}=3^7\)
\(\Leftrightarrow n+2=7\)
\(\Leftrightarrow n=7-2\)
\(\Leftrightarrow n=5\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{5\right\}\)
b) \(2^{-1}\cdot2^n+4\cdot2^n=9\cdot2^5\) (2)
\(\Leftrightarrow\left(2^{-1}+4\right)\cdot2^n=9\cdot2^5\)
\(\Leftrightarrow\left(\dfrac{1}{2}+4\right)\cdot2^n=9\cdot2^5\)
\(\Leftrightarrow\dfrac{9}{2}\cdot2^n=9\cdot2^5\)
\(\Leftrightarrow2^n=2^6\)
\(\Leftrightarrow n=6\)
Vậy tập nghiệm phương trình (2) là \(S=\left\{6\right\}\)