tìm GTLN của:B=x2+6x+15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
\(E=-\left(x^4+10x^2+9+6x^3+6x\right)+24\)
\(=-\left[\left(x^2+9\right)\left(x^2+1\right)+6x\left(x^2+1\right)\right]+24\)
\(=-\left(x^2+1\right)\left(x^2+9+6x\right)+24\)
\(=-\left(x^2+1\right)\left(x+3\right)^2+24\le24\)
\(E_{max}=24\) khi \(x=-3\)
\(A=-3x^2+6x-7=-3\left(x^2-2x+1-1\right)-7\)
\(=-3\left(x-1\right)^2-4\le-4\)Dấu ''='' xảy ra khi x = 1
\(B=-2x^2+5x+1=-2\left(x^2-\dfrac{5}{2}x\right)+1\)
\(=-2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{25}{16}\right)+1\)
\(=-2\left(x-\dfrac{5}{4}\right)^2+\dfrac{33}{8}\le\dfrac{33}{8}\)Dấu ''='' xảy ra khi x = 5/4
C;D chỉ có GTNN thôi bạn nhé \(C=2x^2-8x+13=2\left(x^2-4x+4-4\right)+13\)
\(=2\left(x-2\right)^2+5\ge5\)Dấu ''='' xảy ra khi x = 2
\(D=x^2-3x+5=x^2-2.\dfrac{3}{2}x+\dfrac{9}{4}-\dfrac{9}{4}+5\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)Dấu ''='' xảy ra khi x = 3/2
d: Ta có: \(D=x^2-3x+5\)
\(=x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
\(B=\frac{x^2+y^2+3}{x^2+y^2+2}\)
\(\Rightarrow B=1+\frac{1}{x^2+y^2+2}\)
Vì \(x^2+y^2+2\ge0\) \(\forall xy\) nên để \(\frac{1}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.
Ta có:
\(\left\{{}\begin{matrix}x^2\ge0\forall x\\y^2\ge0\forall y\end{matrix}\right.\Rightarrow x^2+y^2\ge0.\)
\(\Rightarrow x^2+y^2+2\ge2\)
\(\Rightarrow\frac{1}{x^2+y^2+2}\le\frac{1}{2}=0,5\)
\(\Rightarrow B=1+\frac{1}{x^2+y^2+2}\le1+0,5=1,5.\)
Dấu '' = '' xảy ra khi:
\(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(MAX_B=1,5\) khi \(x=0\) và \(y=0.\)
Chúc em học tốt!
\(E=-x^2+6x-15=-\left(x^2-6x+9\right)-6=-\left(x-3\right)^2-6\le-6\)
\(maxE=-6\Leftrightarrow x=3\)
A= -x2+2x+3
=>A= -(x2-2x+3)
=>A= -(x2-2.x.1+1+3-1)
=>A=-[(x-1)2+2]
=>A= -(x+1)2-2
Vì -(x+1)2 ≤0=> A≤-2
Dấu "=" xảy ra khi
-(x+1)2=0 => x=-1
Vây A lớn nhất= -2 khi x= -1
B=x2-2x+4y2-4y+8
=> B= (x2-2x+1)+(4y2-4y+1)+6
=> B=(x-1)2+(2y+1)2+6
=> B lớn nhất=6 khi x=1 và y=-1/2
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)
Sửa đề: Tìm GTNN của \(B=x^2+6x+15\)
Giải:
Ta có: \(B=x^2+6x+15=x^2+6x+9+6\)
\(=\left(x+3\right)^2+6\)
Ta thấy \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2+6\ge6\)
Dấu " = " xảy ra khi \(\left(x+3\right)^2=0\Leftrightarrow x=-3\)
Vậy \(MIN_B=6\) khi x = -3
Tìm GTNN chứ!
\(B=x^2+6x+15\)
\(=x^2+3x+3x+9+6\)
\(=\left(x^2+3x\right)+\left(3x+9\right)+6\)
\(=x.\left(x+3\right)+3.\left(x+3\right)+6\)
\(=\left(x+3\right)^2+6\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x+3\right)^2\ge0\Rightarrow\left(x+3\right)^2+6\ge6\)
Hay \(B\ge6\) với mọi giá trị của \(x\in R\).
Để \(B=6\) thì \(\left(x+3\right)^2+6=6\)
\(\Rightarrow\left(x+3\right)^2=0\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
Vậy GTNN của biểu thức B là 6 đạt được khi và chỉ khi \(x=-3\)
Chúc bạn học tốt!!!