K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{a}{2b+2c-a}=\dfrac{3a^2}{3a\left(2b+2c-a\right)}\ge\dfrac{3a^2}{\dfrac{\left(3a+2b+2c-a\right)^2}{4}}\)

\(\dfrac{12a^2}{\left(3a+2b+2c-a\right)^2}\)\(=\dfrac{12a^2}{\left(2a+2b+2c\right)^2}\)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{b}{2a+2c-b}\ge\dfrac{12b^2}{\left(2a+2b+2c\right)^2};\dfrac{c}{2a+2b-c}\ge\dfrac{12c^2}{\left(2a+2b+2c\right)^2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\dfrac{12\left(a^2+b^2+c^2\right)}{4\left(a+b+c\right)^2}\ge\dfrac{4\left(a+b+c\right)^2}{4\left(a+b+c\right)^2}=1\)

Đẳng thức xảy ra khi \(a=b=c\)

16 tháng 6 2017

\(\dfrac{a}{2b+2c-a}+\dfrac{b}{2c+2a-b}+\dfrac{c}{2a+2b-c}\)

\(=\dfrac{a^2}{2ab+2ac-a^2}+\dfrac{b^2}{2bc+2ba-b^2}+\dfrac{c^2}{2ca+2cb-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{4\left(ab+bc+ca\right)-a^2-b^2-c^2}\)

\(\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+a^2+b^2+c^2-a^2-b^2-c^2}=1\)

Dấu = xảy ra khi a = b = c

Đặt \(\hept{\begin{cases}-a+2b+2c=x\\2a-b+2c=y\\2a+2b-c=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a=\frac{2y+2z-x}{9}\\b=\frac{2z+2x-y}{9}\\c=\frac{2x+2y-z}{9}\end{cases}}\)

Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên x,y,z>0

Khi đó : \(VT=\frac{2y+2z-x}{9x}+\frac{2z+2x-y}{9y}+\frac{2x+2y-z}{9z}\)

\(=\frac{2}{9}\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{2}{9}\left(\frac{y}{z}+\frac{z}{y}\right)+\frac{2}{9}\left(\frac{z}{x}+\frac{x}{z}\right)-\frac{1}{3}\)

\(\ge\frac{2}{9}.2+\frac{2}{9}.2+\frac{2}{9}.2-\frac{1}{3}\)(BĐT Cauchy cho 2 số không âm)

\(=\frac{4}{9}.3-\frac{1}{3}=\frac{4}{3}-\frac{1}{3}=1\)

9 tháng 7 2021

\(\frac{a}{2b+2c-a}+\frac{b}{2a+2c-b}+\frac{c}{2a+2b-c}\)

\(\frac{a^2}{2ab+2ac-a^2}+\frac{b^2}{2ab+2bc-b^2}+\frac{c^2}{2ac+2bc-c^2}\)

đặt pt là P

\(P\ge\frac{\left(a+b+c\right)^2}{2ab+2ac-a^2+2ab+2bc-b^2+2ac+2bc-c^2}\)

\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\)

\(a^2+b^2+c^2\ge2ab+2bc+2ca\)(BĐT tương đương)

\(P\ge\frac{\left(a+b+c\right)^2}{4ab+4ac+4bc-a^2-b^2-c^2}\ge\frac{\left(a+b+c\right)^2}{2ab+2ac+2bc}\)

\(\left(a+b+c\right)^2\ge2ab+2ac+2bc\)(BĐT tương đương)

\(P\ge1\)

mình ko chắc đã đúng

11 tháng 9 2021

\(2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\right)\ge1+\dfrac{b}{b+1a}+\dfrac{c}{c+2b}+\dfrac{a}{a+2c}\)

\(\Leftrightarrow2\left(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}+\dfrac{a}{b+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2c}\right)\ge1+\dfrac{b+2a}{b+2a}+\dfrac{c+2b}{c+2b}+\dfrac{a+2c}{a+2c}=1+1+1+1=4\)Thật vậy:

\(\dfrac{a}{b+2c}+\dfrac{a}{b+2a}+\dfrac{b}{c+2a}+\dfrac{b}{c+2b}+\dfrac{c}{a+2b}+\dfrac{c}{a+2c}=a\left(\dfrac{1}{b+2c}+\dfrac{1}{b+2a}\right)+b\left(\dfrac{1}{c+2a}+\dfrac{1}{c+2b}\right)+c\left(\dfrac{1}{a+2b}+\dfrac{1}{a+2c}\right)\)

\(\ge\dfrac{4a}{2\left(a+b+c\right)}+\dfrac{4b}{2\left(a+b+c\right)}+\dfrac{4c}{2\left(a+b+c\right)}=2\)

\(\Rightarrow VT\ge2.2=4\)

\(\RightarrowĐPCM\)

31 tháng 8 2021

CMR gì bạn?

Đề không hiện 

31 tháng 8 2021

undefined

2 tháng 7 2021

\(\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}=\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\)

áp dụng BDT CAUCHY SCHAWRZ

\(=>\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ac+2ac+2ab+2bc}\)

\(=\dfrac{\left(a+b+c\right)^2}{3\left(ab+bc+ac\right)}\ge\dfrac{3\left(ab+bc+ac\right)}{3\left(ab+bc+ac\right)}=1\)

5 tháng 7 2021

cái chỗ bđt cauchy là bđt gì bạn có thể ghi cụ thể nó ra được ko ạ