rút gọn biểu thức
A=41 +42+43+...4100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
b) Gọi \(d\inƯC\left(21n+4;14n+3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42n+9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(21n+4;14n+3\right)=1\)
hay \(\dfrac{21n+4}{14n+3}\) là phân số tối giản(đpcm)
Bài 1:
a) Ta có: \(A=1+2-3-4+5+6-7-8+...-299-300+301+302\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(297+298-299-300\right)+301+302\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)+603\)
\(=75\cdot\left(-4\right)+603\)
\(=603-300=303\)
Bài 2:
a) Vì tổng của hai số là 601 nên trong đó sẽ có 1 số chẵn, 1 số lẻ
mà số nguyên tố chẵn duy nhất là 2
nên số lẻ còn lại là 599(thỏa ĐK)
Vậy: Hai số nguyên tố cần tìm là 2 và 599
b,Gọi ƯCLN(21n+4,14n+3)=d
21n+4⋮d ⇒42n+8⋮d
14n+3⋮d ⇒42n+9⋮d
(42n+9)-(42n+8)⋮d
1⋮d ⇒ƯCLN(21n+4,14n+3)=1
Vậy phân số 21n+4/14n+3 là phân số tối giản
Ta có: \(A=\sqrt{27}-2\sqrt{12}-\sqrt{75}\)
\(=3\sqrt{3}-2\cdot2\sqrt{3}-5\sqrt{3}\)
\(=-6\sqrt{3}\)
\(\Rightarrow A=3\sqrt{3}-2\cdot2\sqrt{3}-5\sqrt{3}=-4\sqrt{3}\)
\(\Rightarrow4A=4+4^2+4^3+...+4^{100}\\ \Rightarrow4A-A=\left(4+4^2+4^3+...+4^{100}\right)-\left(1+4+4^2+...+4^{99}\right)\\ \Rightarrow3A=4^{100}-1< 4^{100}=B\\ \Rightarrow A< \dfrac{B}{3}\)
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) + ...........+ \(\dfrac{1}{4^{100}}\)
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\)+...+ \(\dfrac{1}{4^{99}}\)+ \(\dfrac{1}{4^{100}}\)
4 \(\times\) A = \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) +...+ \(\dfrac{1}{4^{99}}\)
4A - A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
3A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
A = ( \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)): 3
A = \(\dfrac{1}{12}\) - \(\dfrac{1}{3\times4^{100}}\)
Đặt A=1/4^2 +...+1/4^100
4A=1/4+...+1/4^99
4A-A=(1/4+...+1/4^99)-(1/4^2+...+1/4^100)
3A=1/4-1/4^100
A=(1/4-1/4^100)/3
Vậy...
\(A=\left(5a-5\right)^2+10\left(a-3\right)\left(1+a\right).3a\)
\(A=25a^2-50a+25+30a\left(a-3+a^2-3a\right)\)
\(A=25a^2-50a+25+30a^2-90a+30a^3-90a^2\)
\(A=30a^3-35a^2-140a+25\)
Ta có: \(A=\left(5a-5\right)^2+10\left(a-3\right)\left(a+1\right)\cdot3a\)
\(=25a^2-50a+25+30a\left(a^2-2a-3\right)\)
\(=25a^2-50a+25+30a^3-60a^2-90a\)
\(=30a^3-35a^2-140a+25\)
Giải:
a,\(\dfrac{2^5.3^2}{2^3.3}=2^2.3=12\)
b, \(\dfrac{5^3.6}{5.2^2}=\dfrac{5^3.2.3}{5.2^2}=\dfrac{5^2.3}{2}=37,5\)
c, \(\dfrac{8.5^2-8.4^2}{2^2.3^2}=\dfrac{8.\left(5^2-4^2\right)}{2^2.3^2}=\dfrac{8.9}{4.9}=2\)
d, \(\dfrac{7^4.2^2+7^4.3}{49.26}=\dfrac{7^4.\left(2^2+3\right)}{7^2.26}=\dfrac{7^4.7}{7^2.26}=\dfrac{343}{26}\)
Have a nice day!