Chứng minh rằng: \(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) không là số tự nhiên với mọi x, y, z, t thuộc N*.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x;y;z;t\in N\)* nên ta có :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
Cộng vế với vế ta được :
\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)
\(\Rightarrow1< M< 2\)
=> M có giá trị không phải là số tự nhiên
Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)
Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2
Vậy M không phải là số tự nhiên
Ta có
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)
\(\frac{y}{x+y+t+z}< \frac{y}{x+y+t}< \frac{y}{x+y}\)
\(\frac{z}{y+z+t+x}< \frac{z}{y+z+t}< \frac{z}{z+t}\)
\(\frac{t}{z+t+x+y}< \frac{t}{z+t+x}< \frac{t}{z+x}\)
công lại ta dc
1<M<2
vậy M k \(\in\)N
Ta có :
\(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}\)
\(+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1\)
Suy ra \(M>1\)\(\left(1\right)\)
Lại có :
\(\frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)\(;\)\(\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)\(;\)\(\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)\(;\)\(\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)
\(\Rightarrow\)\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}\)\(+\frac{t+y}{x+y+z+t}=\frac{x+t+y+z+z+x+t+y}{x+y+z+t}=\frac{2x+2y+2z+2t}{x+y+z+t}=\frac{2\left(x+y+z+t\right)}{x+y+z+t}=2\)
Suy ra \(M< 2\)\(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(1< M< 2\)
Vậy \(M\) không là số tự nhiên
\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)
Ta chứng minh \(\frac{a}{b}
chứng minh \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)không phải số tự nhiên
ta có *x/x+y+z+t<x/x+y+z<x/x+y
và *y/x+y+z+t<y/x+y+t<y/x+y
*z/x+y+z+t<z/y+z+t<z/z+t
*t/x+y+z+t<t/x+z+t<t/z+t
=> cộng các vế cho nhau, ta có:
(x/x+y+z+t)+(y/x+y+z+t)+(z/x+y+z+t)+(t/x+y+z+t)<M<(x/x+y)+(y/x+y)+(z/z+t)+(t/z+t)
hay x+y+z+t/x+y+z+t<m<(x+y/x+y)+(z+t/z+t)
=>1<M<2 => m ko có giá trị là số tự nhiên
CHÚC BẠN HỌC TỐT!!!
Vì x, y, z, t thuộc N* nên :
\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)
\(\frac{y}{x+y+z+t}< \frac{y}{z+y+t}< \frac{y}{x+y}\left(2\right)\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)
\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{x+y}\left(4\right)\)
Từ (1) (2) (3) và (4)
\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow M\) không phải là số tự nhiên
Cái chỗ (4) là \(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\)nha mình nhầm
Ta có : \(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\)
\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+z}\)
\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+1}\)
\(\frac{1}{x+y+z+t}< \frac{1}{x+y+t}< \frac{1}{z+t}\)
\(\Rightarrow\frac{x+y+z+t}{x+y+z+t}< M< \left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{z}{z+t}+\frac{t}{z+t}\right)\)
Hay \(1< M< 2\). Vậy \(M\)có giá trị ko phải số tự nhiên