K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2017

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\)

\(\Rightarrow3\left(2x-y\right)=2\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\)

\(\Rightarrow6x-2x=3y+2y\)

\(\Rightarrow4x=5y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

Vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

25 tháng 5 2017

\(\dfrac{2x-y}{x+y}=\dfrac{2}{3}\Rightarrow3.\left(2x-y\right)=2.\left(x+y\right)\)

\(\Rightarrow6x-3y=2x+2y\Rightarrow6x-2x=2y+3y\Rightarrow4x=5y\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{5}{4}\)

Vậy \(\dfrac{x}{y}=\dfrac{5}{4}\)

Chúc bạn hcọ tốt nha!!!

17 tháng 8 2019

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{13}\left(x< y< z\right)\)

\(x+y+z=51\)

\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{13}=\frac{x+y+z}{9+12+13}=\frac{51}{34}=\frac{3}{2}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=18\\z=\frac{39}{2}\end{cases}}\)

3 tháng 3 2020

tham khảo nha https://olm.vn/hoi-dap/detail/2810649382.html

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

NV
12 tháng 1 2024

a.

\(A=\left|x-3\right|+\left|x-4\right|+\left|x-7\right|\)

\(A=\left|x-3\right|+\left|7-x\right|+\left|x-4\right|\)

Áp dụng BĐT trị tuyệt đối:

\(A\ge\left|x-3+7-x\right|+\left|x-4\right|\)

\(\Rightarrow A\ge4+\left|x-4\right|\ge4\)

\(\Rightarrow A_{min}=4\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-3\right)\left(7-x\right)\ge0\\x-4=0\end{matrix}\right.\) \(\Rightarrow x=4\)

Câu b đã giải bên dưới

7 tháng 1 2017

1.

-2...4/5....

*Khi x<-2

4-5x=-x-2=> x=6/4=3/2 loại

*khi -2<=x<4/5

4-5x=x+2=> x=2/6=1/3<4/5 nhân

*kho x>=4/5

5x-4=x+2=> x=6/4=3/2 nhận

2.

x(1+y)+y+1=10

(x+1)(y+1)=10

x+1={-10,-5,-2,-1,1,2,5,10}=> x={-11,-6,-3,-2,0,1,4,9}

y+1={-1,-2,-5,-10,10,5,2,1)=> y={-2,-3,-6,-11,9,4,1,0}

4 tháng 4 2018

jhvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

18 tháng 1 2016

tic cho mình hết âm nhé

8 tháng 1 2019

Bài 1 :

x2 - x - 2 = x2 - 2x + x - 2

= x( x - 2 ) + ( x - 2 ) = ( x - 2 ) ( x + 1 )

Để x3 + ax + b ⋮ ( x - 2 ) ( x + 1) thì :

x3 + ax + b = ( x - 2 ) ( x + 1 ) . Q

Vì đẳng thức trên đúng với mọi x, do đó :

+) đặt x = 2 ta có :

23 + 2a + b = ( 2 - 2 ) ( 2 + 1 ) . Q

8 + 2a + b = 0

2a + b = -8

b = -8 - 2a (1)

+) đặt x = -1 ta có :

(-1)3 + (-1)a + b = ( -1 - 2 ) ( -1 + 1 ) . Q

-1 - a + b = 0

-a + b = 1 (2)

Thay (1) vào (2) ta có :

-a - 8 - 2a = 1

<=> -3a = 9

<=> a = -3

=> b = 1 + (-3) = -2

Vậy a = -3; b = -2