Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : (x + 4)(y + 3) = 3 = 1.3 = 3.1 = (-1)(-3) = (-3)(-1)
+) x + 4 = 1 => x = -3 ; y + 3 = 3 => y = 0
+) x + 4 = 3 => x = -1 ; y + 3 = 1 => y = -2
+) x + 4 = -1 => x = -5 ; y + 3 = -3 => y = -6
+) x + 4 = -3 => x = -7 ; y + 3 = -1 => y = -4
(x + 2)(y - 3) = -3 = (-1).3 = (-3).1
+) x + 2 = -1 => x = -3 ; y - 3 = 3 => y = 6
+) x + 2 = -3 => x = -5 ; y - 3 = 1 => y = 4
1. Để A \(\in\)Z <=> x + 3 \(⋮\)4
=> x + 3 \(\in\)B(4) = {0; 4; 8; 12;16; ....}
=> x \(\in\){-3; 1; 5; 9; 13; ...}
2. Ta có: A = \(\frac{x+1}{x-2}=\frac{\left(x-2\right)+3}{x-2}=1+\frac{3}{x-2}\)
Để A \(\in\)Z <=> 3 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(3) = {1; -1; 3; -3}
<=> x \(\in\){3; 1; 5; -1}
3. Ta có: A = \(\frac{3x-5}{x-2}=\frac{3\left(x-2\right)+1}{x-2}=3+\frac{1}{x-2}\)
Để A \(\in\)Z <=> 1 \(⋮\)x - 2 <=> x - 2 \(\in\)Ư(1) = {1; -1}
<=> x \(\in\){3; 1}
\(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}\)
\(\Rightarrow\frac{x+1+y+2+z+3}{2+3+4}=\frac{x+1}{2}=\frac{y+2}{3}=\frac{z-3}{4}=\frac{27}{9}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot2-1=5\\y=3\cdot3-2=6\\z=3\cdot4-3=9\end{cases}}\)
vậy_
a)
Ta có : vì|1/2-1/3+x| lớn hơn hoặc bằng 0
Còn -1/4-|y| bé hơn hoặc bằng 0
=> ko tồn tại x
b)
Ta có: |x-y| lớn hơn hoặc bằng 0 và|y+9/25| lớn hơn hoặc bằng 0 mà:
| x-y|+ |y+9/25| =0 => |x-y| =0 và |y+9/25|=0
Xét |y+9/25| có:
| y+9/25|=0 => y+9/25=0 => y=-9/25
Thay y = -9/25 vào |x-y| =0 => x=-9/25
Vậy x=y=-9/25
1.
-2...4/5....
*Khi x<-2
4-5x=-x-2=> x=6/4=3/2 loại
*khi -2<=x<4/5
4-5x=x+2=> x=2/6=1/3<4/5 nhân
*kho x>=4/5
5x-4=x+2=> x=6/4=3/2 nhận
2.
x(1+y)+y+1=10
(x+1)(y+1)=10
x+1={-10,-5,-2,-1,1,2,5,10}=> x={-11,-6,-3,-2,0,1,4,9}
y+1={-1,-2,-5,-10,10,5,2,1)=> y={-2,-3,-6,-11,9,4,1,0}
jhvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv