K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét ΔMIK vuông tại I và ΔMAK vuông tại A có

MK chung

góc IMK=góc AMK

=>ΔMIK=ΔMAK

=>góc IKM=góc AKM

=>KM là phân giác của góc AKI

2: KI=KA

KA<KP

=>KI<KP

3: Xét ΔMBP có

PI,BA là đường cao

PI cắt BA tại K

=>K là trực tâm

=>MK vuông góc PB

MI=MA

KI=KA

=>MK là trung trực của AI

=>MK vuông góc AI

=>AI//PB

5 tháng 4 2017

18 tháng 10 2017

Chọn B.

 Phương pháp:

+) Với (P), (Q), (R) là 3 mặt phẳng phân biệt, có 

+) Chứng minh hai mặt phẳng song song:

Cách giải:

20 tháng 10 2019

1). Vì MP là đường kính suy ra  P N ⊥ M N  (1).

Vì MD là đường kính suy ra  D N ⊥ M N  (2).

Từ (1) và (2), suy ra N; P; D thẳng hàng.

27 tháng 2 2022

C

27 tháng 2 2022

C

NV
6 tháng 1 2022

Gọi (P) là mặt phẳng qua M, song song DE và SC

Gọi O là giao điểm AC, BD \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow\) OM là đường trung bình tam giác SAC

\(\Rightarrow OM||SC\Rightarrow O\in\left(P\right)\)

Trong mp (SBD), gọi F là trung điểm BE \(\Rightarrow OF\) là đường trung bình tam giác BDE

\(\Rightarrow OF||DE\Rightarrow F\in\left(P\right)\)

Trong mp (SBC), qua F kẻ đường thẳng song song SC cắt BC tại G

\(\Rightarrow G\in\left(P\right)\)

Trong mp (ABCD), nối GO kéo dài cắt AD tại H

\(\Rightarrow H\in\left(P\right)\)

\(\Rightarrow\) Thiết diện của (P) và chóp là tứ giác MFGH (và tứ giác này không có điều gì đặc biệt)

NV
6 tháng 1 2022

undefined

23 tháng 12 2021

a/ Xét tứ giác DPMQ có

EDF=MQD=ˆMPD=90oEDF^=MQD^=MPD^=90o

=> Tứ giác DPMQ là hcn

b/ Để hcn DPMQ là hình vuông thì DM là tia pg ^EDF

c/ Có I đx M qua DE

=> DE là đường t/trực của IM

=> DI = DM (1)

=> t/g DIM cân tại D có DE là đường trung trực

=> DE đồng thời là đường pg

=> ˆIDE=ˆEDMIDE^=EDM^ (2) 

CMTT : DM = DK (3) ; ˆKDF=ˆFDMKDF^=FDM^ (4)

Từ (2) ; (4)

=> ∠IDE+EDF+KDF=IDK=180oIDE^+EDF^+KDF^=IDK^=180o

=> I,D,K thẳng hàng 

Từ (1) ; (3)=> ID = DK

Do đó D là trđ IK

=> I đx K qua D