K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

a) 2|x+1|=10

\(\left|x+1\right|\) = 10:2

\(\left|x+1\right|\) = 5

\(\left[{}\begin{matrix}x+1=5\\x+1=-5\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=5-1\\x=\left(-5\right)-1\end{matrix}\right.\) \(\Rightarrow\) \(\left[{}\begin{matrix}x=4\\x=-6\end{matrix}\right.\)

b) (−12)2x=56+10.13x

144x= 56+130x

144x-130x= 56

14x= 56

x= 56: 14

x= 4

26 tháng 10 2017

a) 2\(|\)x + 1\(|\) = 10 \(\Rightarrow\) \(|\)x + 1\(|\) = 5

\(\Rightarrow\) x + 1 = 5 hay x = 4

hoặc x + 1 = \(-\)5 hay x = \(-\)6.

ĐS : x = 4, x = \(-\)6.

b) x = 4.

21 tháng 2 2019

a) (-12)2.x = 56 + 10.13x

=> 144.x = 56 + 130x

=> 144x - 130x = 56

=> 14x = 56

=>x = 56 : 14

=> x = 4

b) 80 - (x2 + 5) = 66

=> x2 + 5 = 80 - 66

=> x2 + 5 = 14

=> x2 = 14 - 5

=> x2 = 9

=> x2 = 32

=> \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

21 tháng 2 2019

c) 9 - 25 = (7 - x) - (25 + 7)

=> -16 = (7 - x) - 32

=> 7 - x = -16 + 32

=> 7 - x = 16

=> x = 7 - 16

=> x = -9

d) \(\left(x+5\right)^2=16\)

=> \(\left(x+5\right)^2=4^2\)

=> \(\orbr{\begin{cases}x+5=4\\x+5=-4\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=-9\end{cases}}\)

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

8 tháng 3 2021

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

a. 

$(25-2x)^3:5-3^2=4^2$

$(25-2x)^3:5=4^2+3^2=25$

$(25-2x)^3=25.5=5^3$

$\Rightarrow 25-2x=5$

$\Rightarrow 2x=20$

$\Rightarrow x=10$

b.

$2.3^x=10.3^{12}+8.27^4=10.3^{12}+8.3^{12}=18.3^{12}=2.3^{14}$

$\Rightarrow 3^x=3^{14}$

$\Rightarrow x=14$

NV
8 tháng 1

a.

\(10⋮\left(x-1\right)\)

\(\Rightarrow x-1=Ư\left(10\right)\)

\(\Rightarrow x-1=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)

\(\Rightarrow x=\left\{-9;-4;-1;0;2;3;6;11\right\}\)

b.

\(\left(x+5\right)⋮\left(x-2\right)\Rightarrow\left(x-2\right)+7⋮x-2\)

\(\Rightarrow7⋮x-2\)

\(\Rightarrow x-2=Ư\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Rightarrow x=\left\{-5;1;3;9\right\}\)

c.

\(\left(3x+8\right)⋮\left(x-1\right)\)

\(\Rightarrow\left(3x-3+11\right)⋮\left(x-1\right)\)

\(\Rightarrow3\left(x-1\right)+11⋮x-1\)

\(\Rightarrow11⋮\left(x-1\right)\)

\(\Rightarrow x-1=Ư\left(11\right)=\left\{-11;-1;1;11\right\}\)

\(\Rightarrow x=\left\{-10;0;2;12\right\}\)

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

22 tháng 1 2016

a) \(f\left(x\right)=\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}=\frac{A}{x-1}+\frac{B}{x+2}+\frac{C}{x}=\frac{Ax\left(x+2\right)+Bx\left(x-1\right)+C\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)x}\)

Bằng cách thay các nghiệm thực của mẫu số vào hai tử số, ta có hệ :

\(\begin{cases}x=1\rightarrow18=3A\Leftrightarrow A=6\\x=-2\rightarrow18=6B\Leftrightarrow B=3\\x=0\rightarrow12=-2C\Leftrightarrow=-6\end{cases}\) \(\Rightarrow f\left(x\right)=\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\)

Vậy : \(\int\frac{3x^2+3x+12}{\left(x-1\right)\left(x+2\right)x}dx=\int\left(\frac{6}{x-1}+\frac{3}{x+2}-\frac{6}{x}\right)dx=6\ln\left|x-1\right|+3\ln\left|x+2\right|-6\ln\left|x\right|+C\)

22 tháng 1 2016

b) \(f\left(x\right)=\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}=\frac{A}{x-1}+\frac{B}{x-2}+\frac{C}{x-4}\)

\(=\frac{A\left(x-2\right)\left(x-4\right)+B\left(x-1\right)\left(x-4\right)+C\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}\)

Bằng cách thay các nghiệm của mẫu số vào hai tử số ta có hệ :

\(\begin{cases}x=1\rightarrow9A=3\Leftrightarrow x=3\\x=2\rightarrow14=-2B\Leftrightarrow x=-7\\x=4\rightarrow30=6C\Leftrightarrow C=5\end{cases}\)

\(\Rightarrow f\left(x\right)=\frac{3}{x-1}-\frac{7}{x-2}+\frac{5}{x-4}\)

Vậy :

\(\int\frac{x^2+2x+6}{\left(x-1\right)\left(x-2\right)\left(x-4\right)}dx=\)\(\int\left(\frac{3}{x-1}+\frac{7}{x-2}+\frac{5}{x-4}\right)dx\)=\(3\ln\left|x-1\right|-7\ln\left|x-2\right|+5\ln\left|x-4\right|+C\)

26 tháng 8 2018

a) \(\left(x+2\right)^2-9=0\)

\(\Rightarrow\left(x+2\right)^2=9\)

\(\Rightarrow\left(x+2\right)^2=3^2\)

\(\Rightarrow x+2=3\)

\(\Rightarrow x=3-2=1\)

26 tháng 8 2018

a) ( x + 2 )2 = 9

=> ( x + 2 ) 2 = 9

=> ( x + 2 )2 = 32

=> x + 2 = + 3

=> \(\orbr{\begin{cases}x+2=-3\\x+2=3\end{cases}}\)

=> \(\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

Vậy x = -1; 5

b) ( x + 2 )2 - x2 + 4 = 0

=> ( x + 2 )2 - ( x2 - 4 ) = 0

=> ( x + 2 )2 - ( x + 2 ) ( x  - 2 ) = 0

=> ( x + 2 ) ( x + 2 -  x + 2 ) = 0

=> ( x + 2 ) . 4 = 0

=> x + 2 = 0 

=> x = - 2

Vậy x = - 2 

c)  5 ( 2x - 3 )2 - 5 ( x + 1 )2 - 15( x + 4 ) ( x - 4 )  = - 10

=> 5 ( 4x2 - 12x + 9 ) - 5 ( x2 + 2x + 1 ) - 15 ( x2 - 42 ) = - 10

=> 20x2 - 60x + 45 - 5x2 - 10x - 5 - 15x2 + 240 = -10

=> - 70x + 280 = - 10

=> - 70x = - 290

=> x = \(\frac{29}{7}\)

Vậy x = \(\frac{29}{7}\)

d)  x ( x + 5 ) ( x - 5 ) - ( x + 2 ) ( x2 - 2x + 4 ) = 3

=> x ( x2 - 25 ) - ( x3 - 8 ) = 3

=> x3 - 25x - x3 + 8 = 3

=> - 25x + 8 = 3

=> - 25x = -5

=> x = \(\frac{1}{5}\)

Vậy x = \(\frac{1}{5}\)