K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2017

Bạn ơi mấy câu này pn lấy ở sách nào v ??

các bạn giúp mình với , please !!!!!!!!!!!!!!!!!!!!!!!!!!!!

15 tháng 3 2023

giúp em đi ạ

 

17 tháng 3 2020

CM được S,T,E thẳng hàng 

Xét tam giác ECT zà tam giác EST có \(\widehat{CET}\left(chung\right),\widehat{ECT}=\widehat{ESC}\)

=>tam giác ECT=tam giác EST(g.g) 

=>\(\frac{EC}{ES}=\frac{ET}{EC}=>ET.ES=EC^2\)

xét tam giác EMT zà tam giác ESN có \(\widehat{MET}\left(chung\right),\widehat{EMT}=\widehat{ESN}\)

=> tam giác ECT = tam giác ESN(g.g) 

=>\(\frac{EM}{ES}=\frac{ET}{EN}=>ET.ES=EM.EN=EM.EN\\\)

Nên \(EC^2=EM.EN=\left(=ET.ES\right)=\frac{EC}{EN}=\frac{EM}{EC}\)

tam giác ECM = tam giasc ENC (c.g.c)

=>\(\widehat{EMC}=\widehat{ENC}\)

=>\(\widehat{ECD}+\widehat{DCM}=\widehat{NAC}+\widehat{NCA}\)

mà \(\widehat{ECD=\widehat{NAC}}\)

nên \(\widehat{DCM}=\widehat{NCA}\)

ta có \(KL//AB=>\widebat{BK}=\widebat{AL}=>\widehat{DCM}=\widehat{LCA}\)

ta có\(\widehat{NCA}=\widehat{LCA}\left(=\widehat{DCM}\right)\)

=> hai tia CN , CL trùng nhau .zậy C,N,L thẳng hàng

a: góc CEM+góc CDM=180 độ

=>CEMD nội tiếp

b: góc EDM=góc ECM

góc FDM=góc FBM=góc ABM

=>góc EDF=góc ACM+góc ABM=60 độ

 

5 tháng 6 2023

A B x C y D E F M

a/

D và E cùng nhìn MC dưới 1 góc vuông -> CDME là tứ giác nội tiếp

b/

CM tương tự ta cũng có tứ giác BDMF là tứ giác nội tiếp

\(\Rightarrow\widehat{MBF}=\widehat{MDF}\) (góc nt cùng chắn cung MF) (1)

Xét tứ giác nt CDME có

\(\widehat{MCE}=\widehat{MDE}\) (góc nt cùng chắn cung MF) (2)

Từ (1) và (2) \(\Rightarrow\widehat{MBF}+\widehat{MCE}=\widehat{MDF}+\widehat{MDE}=\widehat{EDF}\) (3)

Xét \(\Delta ABC\) có

AB=AC (Hai tiếp tuyến cùng xp từ 1 điểm)

=> \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\dfrac{180^o-\widehat{xAy}}{2}=\dfrac{180^o-60^o}{2}=60^o\)

Ta có

\(sđ\widehat{ABC}=\dfrac{1}{2}sđ\) cung BC => sđ cung BC = 2.sđ \(\widehat{ABC}=2.60^o=120^o\) 

=> sđ cung BM + sđ cung CM = sđ cung BC \(=120^o\)

Ta có

\(sđ\widehat{MBF}=\dfrac{1}{2}sđ\)  cung BM (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{MCE}=\dfrac{1}{2}sđ\) cung CM (góc giữa tiếp tuyến và dây cung)

\(\Rightarrow sđ\widehat{MBF}+sđ\widehat{MCE}=sđ\widehat{EDF}=\dfrac{sđcungBM+sđcungCM}{2}=\dfrac{sđcungBC}{2}=\dfrac{120^0}{2}=60^o\)

c/

Xét tg vuông MBF và tg vuông MCD có

\(sđ\widehat{MBF}=\dfrac{1}{2}sđcungBM\) (góc giữa tiếp tuyến và dây cung)

\(sđ\widehat{MCD}=\dfrac{1}{2}sđcungBM\) (góc nt)

\(\Rightarrow\widehat{MBF}=\widehat{MCD}\) => tg MBF đồng dạng với tg MCD

\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MB}{MC}\)

CM tương tự ta cũng có tg vuông MCE đồng dạng với tg vuông MBD

\(\Rightarrow\dfrac{ME}{MD}=\dfrac{MC}{MB}\Rightarrow\dfrac{MD}{ME}=\dfrac{MB}{MC}\)

\(\Rightarrow\dfrac{MF}{MD}=\dfrac{MD}{ME}\Rightarrow MD^2=ME.MF\left(đpcm\right)\)

 

 

 

14 tháng 3 2015

bạn giải giúp mình nhé :)))

28 tháng 5 2017
Câu này bạn nào giải được không
13 tháng 8 2023

Có cạnh là ABC