K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a. Khoảng cách giữa các điểm a và b trên trục số khi a=-3;b=5 là :

|a-b| = |-3-5| = |-8| = 8

Vậy khoảng cách giữa các điểm a và b trên trục số khi a=-3;b=5 là 8

b. Khoảng cách giữa các điểm a và b trên trục số khi a=15;b=37 là :

|a-b| = |15-37| = |-22| = 22

Vậy khoảng cách giữa a và b trên trục số khi a=15;b=37 là 22.

10 tháng 5 2019

Khoảng cách giữa hai điểm a và b trên trục số bằng:

| -3 -5 | = | -3 + (-5)| = |-8| = 8

18 tháng 8 2018

Khoảng cách giữa hai điểm a và b trên trục số là:

|15 – 37| = |15 + (-37)| = |-22| = 22

20 tháng 4 2022

Võ Ngọc Tú Uyênloading...  

1 tháng 6 2021

A B C D N S M P H K

a) (SAB) và (SAD) cùng vuông góc (ABCD), (SAB) và (SAB) có giao tuyến SA => SA vuông góc (ABCD)

=> BC vuông góc SA. Mà BC vuông góc AB nên BC vuông góc (SAB).

Ta cũng có BD vuông góc AS, BD vuông góc AC vì ABCD là hình vuông

=> BD vuông góc (SAC) hay (SAC) vuông góc (SBD).

b) Gọi M là trung điểm của AB, CM cắt AD tại P, H thuộc CM sao cho AH vuông góc CM, K thuộc SH sao cho AK vuông góc SH.

Dễ thấy AN || CM => AN || (SCM) => d(AN,SC) = d(AN,SCM) = d(A,SCM) = d(A,SMP)

Ta có AH vuông góc MP, MP vuông góc AS => MP vuông góc (HAS) => (SMP) vuông góc (HAS)

Vì (SMP) và (HAS) có giao tuyến SH, AK vuông góc SH tại K nên d(A,SMP) = AK

Theo hệ thức lượng thì: \(\frac{1}{AK^2}=\frac{1}{AS^2}+\frac{1}{AM^2}+\frac{1}{AP^2}\)

\(\Rightarrow d\left(AN,SC\right)=d\left(A,SMP\right)=AK=\frac{AS.AM.AP}{\sqrt{AS^2AM^2+AM^2AP^2+AP^2AS^2}}\)

\(=\frac{a\sqrt{2}.\frac{a}{2}.a}{\sqrt{2a^2.\frac{a^2}{4}+\frac{a^2}{4}.a^2+a^2.2a^2}}=\frac{a\sqrt{22}}{11}.\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) \(ABCD\) là hình vuông \( \Rightarrow BC\parallel A{\rm{D}}\)

Mà \(A{\rm{D}} \subset \left( {SA{\rm{D}}} \right)\)

\( \Rightarrow BC\parallel \left( {SAD} \right) \Rightarrow d\left( {BC,\left( {SAD} \right)} \right) = d\left( {B,\left( {SAD} \right)} \right)\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AB\)

\(ABCD\) là hình vuông \( \Rightarrow AB \bot A{\rm{D}}\)

\( \Rightarrow AB \bot \left( {SA{\rm{D}}} \right) \Rightarrow d\left( {B,\left( {SA{\rm{D}}} \right)} \right) = AB = a\)

Vậy \(d\left( {BC,\left( {SAD} \right)} \right) = a\).

b) \(ABCD\) là hình vuông \( \Rightarrow B{\rm{D}} \bot A{\rm{C}}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot B{\rm{D}}\)

\( \Rightarrow B{\rm{D}} \bot \left( {SAC} \right)\)

Gọi \(O = AC \cap B{\rm{D}}\), kẻ \(OH \bot SC\left( {H \in SC} \right)\)

\(B{\rm{D}} \bot \left( {SAC} \right) \Rightarrow B{\rm{D}} \bot OH\)

\( \Rightarrow d\left( {B{\rm{D}},SC} \right) = OH\)

\(\Delta ABC\) vuông tại \(B\)\( \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2  \Rightarrow OC = \frac{1}{2}AC = \frac{{a\sqrt 2 }}{2}\)

\(SA \bot \left( {ABCD} \right) \Rightarrow SA \bot AC \Rightarrow \Delta SAC\) vuông tại \(A\)\( \Rightarrow SC = \sqrt {S{A^2} + A{C^2}}  = a\sqrt 3 \)

\(\Delta SAC \backsim \Delta OHC\,(g.g) \Rightarrow \frac{{SA}}{{OH}} = \frac{{SC}}{{OC}} \Rightarrow OH = \frac{{SA.OC}}{{SC}} = \frac{{a\sqrt 6 }}{6}\)

Vậy \(d\left( {B{\rm{D}},SC} \right) = \frac{{a\sqrt 6 }}{6}\).

 

26 tháng 5 2017

a) \(\left|\overrightarrow{AB}\right|=3\)

b) \(\left|\overrightarrow{AB}\right|=5\)