Cho hình vuông ABCD có E và F lần lượt là trung điểm của AB và BC.Biết CE và DF cắt nhau tại M.
a) CMR:Diện tích tam giác DMC =1/5 diện tích hình vuông
b) Gọi MH là chiều của của tam giác DMC biết MH=2 cm.Tính MD , MC ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: MD*MC=MH*DC=2*a
a: Xet ΔBEC vuông tại B và ΔCFD vuông tại C có
BE=CF
BC=CD
=>ΔBEC=ΔCFD
=>góc BEC=góc CFD
=>góc CFD+góc FCM=90 độ
=>CE vuông góc BD
Xét ΔDMC vuông tại D và ΔCBE vuông tại B có
góc MCD=góc BEC
=>ΔDMC đồng dạng với ΔCBE
\(S_{CBE}=\dfrac{1}{2}\cdot S_{BAC}=\dfrac{1}{4}\cdot S_{ABCD}\)
ΔDMC đồng dạng với ΔCBE
=>\(\dfrac{S_{DMC}}{S_{CBE}}=\left(\dfrac{DC}{CE}\right)^2=\left(\dfrac{2\cdot BE}{\sqrt{\left(2\cdot BE\right)^2+BE^2}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)
=>\(S_{DMC}=\dfrac{4}{5}\cdot S_{CBE}=\dfrac{4}{5}\cdot\dfrac{1}{4}\cdot S_{ABCD}=\dfrac{1}{5}\cdot S_{ABCD}\)
a: Xet ΔBEC vuông tại B và ΔCFD vuông tại C có
BE=CF
BC=CD
=>ΔBEC=ΔCFD
=>góc BEC=góc CFD
=>góc CFD+góc FCM=90 độ
=>CE vuông góc BD
Xét ΔDMC vuông tại D và ΔCBE vuông tại B có
góc MCD=góc BEC
=>ΔDMC đồng dạng với ΔCBE
b: \(S_{CBE}=\dfrac{1}{2}\cdot S_{BAC}=\dfrac{1}{4}\cdot S_{ABCD}\)
ΔDMC đồng dạng với ΔCBE
=>\(\dfrac{S_{DMC}}{S_{CBE}}=\left(\dfrac{DC}{CE}\right)^2=\left(\dfrac{2\cdot BE}{\sqrt{\left(2\cdot BE\right)^2+BE^2}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)
=>\(S_{DMC}=\dfrac{4}{5}\cdot S_{CBE}=\dfrac{4}{5}\cdot\dfrac{1}{4}\cdot S_{ABCD}=\dfrac{1}{5}\cdot S_{ABCD}\)
-Sửa đề: Tính \(\dfrac{S_{CIF}}{S_{CBE}}\).
-△CBE vuông tại B \(\Rightarrow CE^2=CB^2+BE^2\Rightarrow CE=\sqrt{CB^2+BE^2}=\sqrt{CB^2+\dfrac{1}{4}CB^2}=\dfrac{\sqrt{5}}{2}CB\)
-\(BE=\dfrac{1}{2}AB=\dfrac{1}{2}BC=CF\)\(\Rightarrow\)△CBE=△CFD (c-g-c).
\(\widehat{CIF}=180^0-\widehat{BCE}-\widehat{DFC}=180^0-180^0-\widehat{BCE}-\widehat{BEC}=180^0-\widehat{CBE}=180^0-90^0=90^0\)\(\Rightarrow\)△CIF∼△CBE (g-g).
\(\Rightarrow\dfrac{CI}{CB}=\dfrac{CF}{CE}\)
\(\Rightarrow CI=\dfrac{CB.CF}{CE}=\dfrac{CB.\dfrac{1}{2}CB}{\dfrac{\sqrt{5}}{2}CB}=\dfrac{1}{\sqrt{5}}CB\)
△CIF∼△CBE \(\Rightarrow\dfrac{S_{CIF}}{S_{CBE}}=\left(\dfrac{CI}{CB}\right)^2=\left(\dfrac{\dfrac{1}{\sqrt{5}}CB}{CB}\right)=\dfrac{1}{5}\)
b: MD*MC=MH*DC=2*a
a: Xet ΔBEC vuông tại B và ΔCFD vuông tại C có
BE=CF
BC=CD
=>ΔBEC=ΔCFD
=>góc BEC=góc CFD
=>góc CFD+góc FCM=90 độ
=>CE vuông góc BD
Xét ΔDMC vuông tại D và ΔCBE vuông tại B có
góc MCD=góc BEC
=>ΔDMC đồng dạng với ΔCBE
\(S_{CBE}=\dfrac{1}{2}\cdot S_{BAC}=\dfrac{1}{4}\cdot S_{ABCD}\)
ΔDMC đồng dạng với ΔCBE
=>\(\dfrac{S_{DMC}}{S_{CBE}}=\left(\dfrac{DC}{CE}\right)^2=\left(\dfrac{2\cdot BE}{\sqrt{\left(2\cdot BE\right)^2+BE^2}}\right)^2=\left(\dfrac{2}{\sqrt{5}}\right)^2=\dfrac{4}{5}\)
=>\(S_{DMC}=\dfrac{4}{5}\cdot S_{CBE}=\dfrac{4}{5}\cdot\dfrac{1}{4}\cdot S_{ABCD}=\dfrac{1}{5}\cdot S_{ABCD}\)