tìm x biết
( 2.3)-(4-x)=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107`
b)
`2.3^x = 162`
`\Rightarrow 3^x = 162 \div 2`
`\Rightarrow 3^x = 81`
`\Rightarrow 3^x = 3^4`
`\Rightarrow x = 4`
Vậy, `x = 4`
c)
`(2x - 15)^5 = (2 - 15)^3`
\(\Rightarrow \)`(2x - 15)^5 - (2x - 15)^3 = 0`
\(\Rightarrow \)`(2x - 15)^3 . [ (2x - 15)^2 - 1] = 0`
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x=15\\\left(2x-15\right)^2=\left(\pm1\right)^2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x-15=1\\2x-15=-1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\2x=16\\2x=-14\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=-7\end{matrix}\right.\)
Vậy, `x \in`\(\left\{-7;8;\dfrac{15}{2}\right\}.\)
`d)`
\(3^{x+2}-5.3^x=?\) Bạn ghi tiếp đề nhé!
`e)`
\(7\cdot4^{x-1}+4^{x-1}=23?\)
\(4^{x-1}\cdot\left(7+1\right)=23\\ \Rightarrow4^{x-1}\cdot8=23\\ \Rightarrow4^{x-1}=\dfrac{23}{8}\)
Bạn xem lại đề!
`f)`
\(2\cdot2^{2x}+4^3\cdot4^x=1056\)
\(\Rightarrow2\cdot2^{2x}+\left(2^2\right)^3\cdot\left(2^2\right)^x=1056\\ \Rightarrow2\cdot2^{2x}+2^6\cdot2^{2x}=1056\\ \Rightarrow2^{2x}\cdot\left(2+2^6\right)=1056\\ \Rightarrow2^{2x}\cdot66=1056\\ \Rightarrow2^{2x}=1056\div66\\ \Rightarrow2^{2x}=16\\ \Rightarrow2^{2x}=2^4\\ \Rightarrow2x=4\\ \Rightarrow x=2\)
Vậy, `x = 2`
_____
\(10 -{[(x \div 3+17) \div 10+3.2^4] \div 10}=5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=10-5\)
\(\Rightarrow\left[\left(x\div3+17\right)\div10+48\right]\div10=5\)
\(\Rightarrow\left(x\div3+17\right)\div10+48=50\)
\(\Rightarrow\left(x\div3+17\right)\div10=2\)
\(\Rightarrow x\div3+17=20\)
\(\Rightarrow x\div3=3\\ \Rightarrow x=9\)
Vậy, `x = 9.`
tìm số tự nhiên x biết
a)2^x-15=17
b)(7^x-11)^3=2^5.5^2+200
c)2.3^x=10.3^12+8.27^4
d)(2x-150^5=(2x-15)^3
2\(^x\)- 15 = 17
\(\Rightarrow\)2\(^x\) = 32
\(\Rightarrow\)x = 5
a) 5.2² + (x + 3) = 5²
5.4 + x + 3 = 25
20 + x + 3 = 25
x + 23 = 25
x = 25 - 23
x = 2
b) 2³ + (x - 3²) = 5³ - 4³
8 + (x - 9) = 125 - 64
8 + x - 9 = 61
x - 1 = 61
x = 61 + 1
x = 62
c) 4.(x - 5) - 2³ = 2⁴.3
4x - 20 - 8 = 16.3
4x - 28 = 48
4x = 48 + 28
4x = 76
x = 76 : 4
x = 19
d) 5.(x + 7) - 10 = 2³.5
5x + 35 - 10 = 8.5
5x + 25 = 40
5x = 40 - 25
5x = 15
x = 15 : 5
x = 3
e) 7² - 7.(13 - x) = 14
49 - 91 + 7x = 14
7x - 42 = 14
7x = 14 + 42
7x = 56
x = 56 : 7
x = 8
a) \(5\cdot2^2+\left(x+3\right)=5^2\)
\(\Rightarrow x+3=5^2-5\cdot2^2\)
\(\Rightarrow x+3=25-5\cdot4\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=5-3\)
\(\Rightarrow x=2\)
b) \(2^3+\left(x-3^2\right)=5^3-4^3\)
\(\Rightarrow8+\left(x-9\right)=125-64\)
\(\Rightarrow8+x-9=61\)
\(\Rightarrow x-1=61\)
\(\Rightarrow x=61+1\)
\(\Rightarrow x=62\)
c) \(4\left(x-5\right)-2^3=2^4\cdot3\)
\(\Rightarrow4\left(x-5\right)=2^4\cdot3+2^3\)
\(\Rightarrow4\cdot\left(x-5\right)=16\cdot3+8\)
\(\Rightarrow4\cdot\left(x-5\right)=56\)
\(\Rightarrow x-5=56:4\)
\(\Rightarrow x-5=14\)
\(\Rightarrow x=19\)
d) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)=8\cdot5+10\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow5\left(x+7\right)=50\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
e) \(7^2-7\left(13-x\right)=14\)
\(\Rightarrow7\left(13-x\right)=7^2-14\)
\(\Rightarrow7\left(13-x\right)=49-14\)
\(\Rightarrow7\left(13-x\right)=35\)
\(\Rightarrow13-x=5\)
\(\Rightarrow x=13-5\)
\(\Rightarrow x=8\)
f) \(5x-5^2=10\)
\(\Rightarrow5x=10+5^2\)
\(\Rightarrow5x=10+25\)
\(\Rightarrow5x=35\)
\(\Rightarrow x=\dfrac{35}{5}\)
\(\Rightarrow x=7\)
g) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x=3^4+2\cdot3^2\)
\(\Rightarrow9x=81+2\cdot9\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
h) \(10x+2^2\cdot5=10^2\)
\(\Rightarrow10x=10^2-2^2\cdot5\)
\(\Rightarrow10x=100-4\cdot5\)
\(\Rightarrow10x=80\)
\(\Rightarrow x=\dfrac{80}{10}\)
\(\Rightarrow x=8\)
i) \(125-5\left(4+x\right)=15\)
\(\Rightarrow5\left(4+x\right)=125-5\)
\(\Rightarrow5\left(4+x\right)=120\)
\(\Rightarrow4+x=\dfrac{120}{5}\)
\(\Rightarrow4+x=24\)
\(\Rightarrow x=24-4\)
\(\Rightarrow x=20\)
j) \(2^6+\left(5+x\right)=3^4\)
\(\Rightarrow5+x=3^4-2^6\)
\(\Rightarrow5+x=81-64\)
\(\Rightarrow5+x=17\)
\(\Rightarrow x=17-5\)
\(\Rightarrow x=12\)
`#040911`
`a,`
`15 + 25 \div (2x - 1) = 20`
`\Rightarrow 25 \div (2x - 1) = 20 - 15`
`\Rightarrow 25 \div (2x - 1) = 5`
`\Rightarrow 2x - 1 = 25 \div 5`
`\Rightarrow 2x - 1 = 5`
`\Rightarrow 2x = 6`
`\Rightarrow x = 3`
Vây, `x = 3.`
`b,`
\(3^{x-1}+2\cdot3^x=21\)
`\Rightarrow 3^x \div 3 + 2. 3^x = 21`
`\Rightarrow 3^x . \frac{1}{3} + 2. 3^x = 21`
`\Rightarrow 3^x . (\frac{1}{3} + 2) = 21`
`\Rightarrow 3^x . \frac{7}{3} = 21`
`\Rightarrow 3^x = 21 \div \frac{7}{3}`
`\Rightarrow 3^x = 9`
`\Rightarrow 3^x = 3^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
`c,`
\(2^{x-3}+2^{x+1}=17\)
`\Rightarrow 2^x \div 2^3 + 2^x . 2 = 17`
`\Rightarrow 2^x . \frac{1}{8} + 2^x . 2 = 17`
`\Rightarrow 2^x . (\frac{1}{8} + 2) = 17`
`\Rightarrow 2^x . \frac{17}{8} = 17`
`\Rightarrow 2^x = 17 \div \frac{17}{8}`
`\Rightarrow 2^x = 8`
`\Rightarrow 2^x = 2^3`
`\Rightarrow x = 3`
Vậy, `x = 3`
`d,`
\(5^x-5^{x-1}=20\)
`\Rightarrow 5^x - 5^x \div 5 = 20`
`\Rightarrow 5^x - 5^x . \frac{1}{5} = 20`
`\Rightarrow 5^x . (1 - \frac{1}{5} = 20`
`\Rightarrow 5^x . \frac{4}{5} = 20`
`\Rightarrow 5^x = 20 \div \frac{4}{5}`
`\Rightarrow 5^x = 25`
`\Rightarrow 5^x = 5^2`
`\Rightarrow x = 2`
Vậy, `x = 2.`
\(a.25:\left(2x-1\right)=5\)
\(2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
\(b.3^x:3+2.3^x=21\)\(\Leftrightarrow3^x.\dfrac{1}{3}+2.3^x=21\)
\(\Leftrightarrow3^x\left(\dfrac{1}{3}+2\right)=21\)
\(\Leftrightarrow3^x.\dfrac{7}{3}=21\)
\(\Leftrightarrow3^x=9\Leftrightarrow x=2\)
\(c.2^x:2^3+2^x.2=17\Leftrightarrow2^x.\dfrac{1}{8}+2^x.2=17\)
\(\Leftrightarrow2^x.\dfrac{17}{8}=17\Leftrightarrow2^x=8\Leftrightarrow x=3\)
\(d.5^x-5^x:5=20\Leftrightarrow5^x-5^x.\dfrac{1}{5}=20\)
\(\Leftrightarrow5^x\left(1-\dfrac{1}{5}\right)=20\Leftrightarrow5^x=20:\dfrac{4}{5}\Leftrightarrow5^x=25\Leftrightarrow x=2\)
1) \(7.4^x=7.4^3\Leftrightarrow4^x=4^3;x=3\)
2) \(\frac{3}{2.5^x}=\frac{3}{2.5^{12}}\Leftrightarrow5^x=5^{12};x=12\)
\(2^x=2.2^8=2^9;x=9\)
4) \(5.3^x=7.3^5-2.3^5\Leftrightarrow5.3^x=3^5.\left(7-2\right)\)
\(\Leftrightarrow3^5.x=3^5.5;x=5\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(x-1\right)\times x}=\frac{15}{16}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x-1}-\frac{1}{x}=\frac{15}{16}\)
\(1-\frac{1}{x}=\frac{15}{16}\)
\(\frac{1}{x}=\frac{1}{16}\)
\(\Rightarrow x=16\)
\(6-4+x=15\Rightarrow2+x=15\Rightarrow x=15-2=13\)\(13\)
một số 13 thôi nha bạn