K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

A = \(\dfrac{1}{b\left(a-b\right)}\) + a

<=> A= \(\dfrac{ab\left(a-b\right)}{ab\left(a-b\right)}+\dfrac{a}{ab\left(a-b\right)}\)

<=> A= \(\dfrac{a\left(ab-b^2+1\right)}{ab\left(a-b\right)}\)

<=> A=\(\dfrac{ab-b^2+1}{ba-b^2}\)

<=> A=1 + \(\dfrac{1}{ab-b^2}\)

14 tháng 5 2017

bạn ơi xem lại bài làm của bạn:))

14 tháng 5 2017

Ta có : A = \(a+\frac{1}{b\left(a-b\right)}\)\(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\)

Áp dụng bất đẳng thức AM-GM cho 3 số không âm , ta có 

\(\left(a-b\right)+\frac{1}{b\left(a-b\right)}+b\) \(\ge3\sqrt[3]{\left(a-b\right)\frac{1}{b\left(a-b\right)}b}\)= 3 

Dấu "=" xảy ra khi  (a-b)=\(\frac{1}{b\left(a-b\right)}\)= b 

=> a=2 , b=1

Vậy Min A = 3 khi a=2, b=1

11 tháng 12 2017

☘ Áp dụng bất đửng thức AM - GM

\(\Rightarrow A=\left(a+b+1\right)\left(a^2+b^2\right)+\dfrac{4}{a+b}\)

\(\ge\left(a+b+1\right)\times2ab+\dfrac{4}{a+b}\)

\(=2\left(a+b+1\right)+\dfrac{4}{a+b}\)

\(=\left(a+b+\dfrac{4}{a+b}\right)+\left(a+b\right)+2\)

\(\ge4+2\sqrt{ab}+2=8\)

⚠ Tự kết luận nha.

NV
11 tháng 6 2021

Đề bài sai, bạn có thể thử kiểm tra với \(a=1.0001\) và \(b=0.9999\)

9 tháng 4 2018

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

10 tháng 4 2018

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

6 tháng 11 2017

\(M=1+\dfrac{1}{a^2}+\dfrac{2}{a}+1+\dfrac{1}{b^2}+\dfrac{2}{b}=2+2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\)

Theo BĐT Cauchy-Swarch ta có

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2.\dfrac{4}{a+b}=8\)

áp dụng BĐT AM-GM ta có

\(\dfrac{1}{a^2}+4\ge2\sqrt{\dfrac{1}{a^2}.4}=\dfrac{4}{a}\) ; \(\dfrac{1}{b^2}+4\ge2\sqrt{\dfrac{1}{b^2}.4}=\dfrac{4}{b}\)

Cộng hai vế BĐT trên lại ta được

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+8\ge\dfrac{4}{a}+\dfrac{4}{b}=4\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge16\)

\(\Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge16-8=8\)

\(\Rightarrow M\ge2+8+8=18\) vậy MinM=18 tại x=y=1/2

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(B=\frac{1}{(a+2b)(a+2c)}+\frac{1}{(b+2a)(b+2c)}+\frac{1}{(c+2a)(c+2b)}\)

\(\geq \frac{9}{(a+2b)(a+2c)+(b+2a)(b+2c)+(c+2a)(c+2b)}\)

\(\Leftrightarrow B\geq \frac{9}{(a^2+2ac+2ab+4bc)+(b^2+2bc+2ab+4ac)+(c^2+2bc+2ac+4ab)}\)

\(\Leftrightarrow B\geq \frac{9}{a^2+b^2+c^2+8(ab+bc+ac)}=\frac{9}{(a+b+c)^2+6(ab+bc+ac)}(*)\)

Theo hệ quả quen thuộc của BĐT Cô-si:

\(a^2+b^2+c^2\geq ab+bc+ac\)

\(\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\)

\(\Rightarrow 2(a+b+c)^2\geq 6(ab+bc+ac)(**)\)

Từ \((*); (**)\Rightarrow B\geq \frac{9}{(a+b+c)^2+2(a+b+c)^2}=\frac{3}{(a+b+c)^2}\geq \frac{3}{3^2}=\frac{1}{3}\)

(do \(a+b+c\leq 3)\)

Do đó: \(B_{\min}=\frac{1}{3}\)

Dấu bằng xảy ra khi \(a=b=c=1\)