K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

A B C D H 1 2 1 2

Xét hai tam giác ACD và BCD có:

AC = BC (gt)

AD = BD (gt)

CD: cạnh chung

Vậy: \(\Delta ACD=\Delta BCD\left(c-c-c\right)\)

Suy ra: \(\widehat{C_1}=\widehat{C_2}\) (hai góc tương ứng)

Xét hai tam giác ACH và BCH có:

AC = BC (gt)

\(\widehat{C_1}=\widehat{C_2}\) (cmt)

CH: cạnh chung

Vậy: \(\Delta ACH=\Delta BCH\left(c-g-c\right)\)

Suy ra: \(\widehat{H_1}=\widehat{H_2}\), HA = HB

\(\widehat{H_1}+\widehat{H_2}=180^o\)

Nên \(\widehat{H_1}=\widehat{H_2}\) = 90o

Do đó: \(CH\perp AB\)

\(CD\perp AB\)và HA = HB nên CD là đường trung trực của AB.

20 tháng 6 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi H là giao điểm của AB và CD

Nối AC, AD,BC,BD

Xét ΔACD và ΔBCD, ta có:

AC = BC

(bán kính hai cung tròn bằng nhau)

AD = BD

CD cạnh chung

Suy ra: ΔACD = ΔBCD(c.c.c)

Suy ra: ∠C1 = ∠C2 (hai góc tương ứng)

Xét hai tam giác AHC và BHC. Ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

∠C1 = ∠C2 (chứng minh trên)

CH cạnh chung

Suy ra: ΔAHC = ΔBHC(c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng) (1)

Ta có : ∠H1 = ∠H2 (hai góc tương ứng)

∠H1 + ∠H2 =180° (hai góc kề bù)

Suy ra: ∠H1 = ∠H2 = 90o ⇒ CD ⊥ AB (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB

24 tháng 2 2018

Hướng dẫn, tự vẽ hình:

Trung tâm A và B cùng bán kính

=>  CA = CB  DA = DB

Hai điểm C D cách đều 2 điểm A B nên CD là đường trung trực của AB.

24 tháng 2 2018

Cung tâm A và cung tâm B có cùng bán kính 

\(\Rightarrow\)CA = CB 

Và DA = DB 

Hai điểm C và D cách đều 2 điểm A và B nên CD là đường trung trực của AB ( đpcm )

27 tháng 2 2019

Lời giải:

Bài 1:

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Gọi H là giao điểm của AB và CD

Nối AC, AD,BC,BD

Xét ΔACD và ΔBCD, ta có:

AC = BC

(bán kính hai cung tròn bằng nhau)

AD = BD

CD cạnh chung

Suy ra: ΔACD= ΔBCD(c.c.c)

Suy ra: ∠C2 =∠C2 (hai góc tương ứng)

Xét hai tam giác AHC và BHC. Ta có:

AC = BC (bán kính hai cung tròn bằng nhau)

∠C2 =∠C2 (chứng minh trên)

CH cạnh chung

Suy ra: ΔAHC= ΔBHC(c.g.c)

Suy ra: AH = BH (hai cạnh tương ứng) (1)

Ta có : ∠H1 =∠H2 (hai góc tương ứng)

∠H1 + ∠H2 =180° (hai góc kề bù)

Suy ra: ∠H1 =∠H2 =90° => CD ⊥ AB (2)

Từ (1) và (2) suy ra CD là đường trung trực của AB

27 tháng 2 2019

bài 2Giải sách bài tập Toán 7 | Giải sbt Toán 7

Kẻ DK ⊥ BH

Ta có: BH ⊥AC(gt)

Suy ra: DK // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song)

=> ∠KDB =C (hai góc đồng vị)

VìΔABC cân tại A nên ∠B =∠C (tính chất tam giác cân)

Suy ra: ∠KDB =B

Xét hai tam giác vuông BFD và DKB, ta có:

∠BFD =∠DKB

BD cạnh huyền chung

∠FBD =∠KDB (chứng minh trên)

Suy ra:ΔBFD=ΔDKB(cạnh huyền góc nhọn)

=> DF = BK (hai cạnh tương ứng)(1)

Nối DH. XétΔDEHvàΔDKH, ta có:

∠DEH =∠DKH =90°

DH cạnh huyền chung

∠EHD =∠KDH (hai góc so le trong)

Suy ra:ΔDEH=ΔDKH( cạnh huyền , góc nhọn)

Suy ra: DE = HK ( hai cạnh tương ứng) (2)

Mặt khác : BH = BK + KH (3)

Từ (1), (2) và (3) suy ra: DF = DE = BH

31 tháng 1 2021

Bạn chỉ cần viết lại khúc từ cung tròn tâm A đến ở C và D rồi suy ra AC=AB=AD=BD=BC là đc nhé còn lại tự giải

16 tháng 11 2018

ta có : mình vẽ ko đúng lắm nhé
a b c m xét tam giác acm và tam giác bcm

có:am=bm(cùng bằng bán kính)

chung cm

bc=ca(m là trung điểm của ab)

vậy tam giac acm băng tam giác bcm (c.c.c)

vậy góc cma=góc cmb(2 góc tương ứng)

vì acb=180o mà cm nằm giữa ca và cb

vậy góc cma= góc cmb=góc acb/2=1800/2=90o

vậy góc cma và cmb vuông 

vậy cm vuông góc với ab

4 tháng 2 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔABC và ΔABD, ta có:

AC = AD (bằng bán kính đường tròn (A))

Ab cạnh chung

BC = BD (bằng bán kính đường tròn (B))

Suy ra: ΔABC = ΔABD (c.c.c)

21 tháng 3 2019

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Xét ΔACD và ΔBCD, ta có:

AC = BC (= AB)

CD cạnh chung

AD = BD (= AB)

Suy ra: ΔACD = ΔBCD(c.c.c)

27 tháng 8 2023

a) Xét tam giác NMA và NMB có:

\(MA=MB\left(gt\right)\)

\(NM\) là cạnh chung.

\(NA=NB\) (đường tròn tâm A và B cùng bán kính cắt nhau)

\(\Rightarrow\Delta NMA=\Delta NMB\left(c.c.c\right)\) (1)

b) Vì \(\widehat{NMA}=\widehat{NMB}\) (từ 1) và 2 góc trên là 2 góc kề bù nên \(\widehat{NMA}=\widehat{NMB}=90^o\)

Vậy \(NM\perp AB\)

c) \(NA=NB\) (từ 1)

\(BM=\dfrac{AB}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Chu vi tam giác NMB:

\(10+8+6=24\left(cm\right)\)