cho tam giác abc vuông ở A.Kẻ AH vuông góc BC.Kẻ HE vuông góc AB.Kẻ HF vuông góc AC
a,Chứng minh AH=EF
b, Gọi M,N thứ tự là trung điểm của HB, HC.Hỏi EFNM là hình gì? Vì sao
Chỉ cần giải câu b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
Do đó: ADHE là hình chữ nhật
a.) xét tam giác ehc:
o và i là trung điểm của he và ec => oi là trung bình cua tam giác ehc
suy ra oi//hc mà hc vuong góc với ah
suy ra oi vuông góc với ah(điều phải chứng minh)
b.) xét tam giác ABC:
AH là đường cao và là đường trung tuyến ứng với cạnh đáy BC nên H là trung điểm của BC
xét tam giác BEC:
H và I là trung điểm của BC và CE suy ra HI là chung bình của tam giác BEC
suy ra HI//BE (1)
tam giác AHI có: OI vuông AH;HE vuông AI mà HI và OI cắ tại O nên O là trức tâm của tam giác AHI suy ra HI vuông AI (2)
từ 1 và 2 ta suy ra AO vuông BE
k cho mk nhé
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
b1
a) CM tam giác chứaHB và chứa HC = nhau
b) CM tam giác chứa 2 góc A = nhau
a: Xét tứ giác AEHF có
\(\widehat{FAE}=\widehat{AFH}=\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=EF