cho tam giác BCD vuông tại B ,BC < BD . Vẽ đường cao BH
1. chứng minh rằng tam giác BCD đồng dạng với tam giác HCB . Từ đó suy ra CH .CD = \(^{CB^2}\)
2, cho BC = 15 ,BD = 20
a, tính độ dài các đoạn thẳng CD , CH
b, gọi A là điểm sao cho tứ giác ABCD là hình thang cân có hai đáy AB ,CD .Tính diện tích hình thang ABCD
Hình: Tự vẽ.
1. Xét \(\Delta BCD\) và \(\Delta HCB\) có: \(\left\{{}\begin{matrix}\widehat{DBC}=\widehat{BHC}=90^o\\\widehat{C}:chung\end{matrix}\right.\)
\(\Rightarrow\Delta BCD~\Delta HCB\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{HC}=\dfrac{CD}{BC}\)
\(\Rightarrow\) BC2 = CH . CD (đpcm)
2. a)Áp dụng định lý Pytago trong \(\Delta BCD\) , ta có:
\(DC=\sqrt{BC^2+BD^2}=\sqrt{15^2+20^2}=25\)
Theo phần 1, ta có: BC2 = CH . CD
\(\Leftrightarrow15^2=CH\cdot25\)
\(\Leftrightarrow CH=\dfrac{15^2}{25}=9\)
b) Hạ \(AK\perp CD\) ( K \(\in\) CD)
Dễ dàng thấy CH = KD = 9
=> HK = AB = 25 - 9 - 9 = 7
Áp dụng định lý Pytago vào tam giác vuông BCH, suy ra BH = 12
=> Diện tích hình thang ABCD là: SABCD = \(\dfrac{\left(25+7\right)\cdot12}{2}=192\left(đvdt\right)\)