Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: ΔHBA đồng dạng với ΔABC
=>BH/BA=BA/BC
=>BA^2=BH*BC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=NA\cdot NC\)
1: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc ACB chung
Do đó: ΔABC\(\sim\)ΔHAC
2: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
=>BM/3=CM/4
Áp dụng tính chất của dãy tr số bằng nhau, ta được:
\(\dfrac{BM}{3}=\dfrac{CM}{4}=\dfrac{BM+CM}{3+4}=\dfrac{25}{7}\)
Do đó: BM=75/7(cm); CM=100/7(cm)
Xét \(\Delta ABC\)\(\perp\) tại \(A\)
Áp dụng định lí py - ta - go :
BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 9 + 16
BC2 = 25
BC = 5 cm
Vậy BC = 5 cm .
Xét \(\Delta ABC\)có BD là đường phân giác \(\widehat{B}\)
\(\Rightarrow\)\(\frac{DA}{DC}=\frac{AB}{BC}\)\(\Rightarrow\) \(\frac{DA}{DC}=\frac{3}{5}\)\(\Rightarrow\) \(\frac{DA}{3}=\frac{DC}{5}\)\(=\frac{DA+DC}{3+5}=\frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow\)\(\frac{DA}{3}=\frac{1}{2}\)\(\Rightarrow\)\(DA=\frac{3}{2}=1,5\)cm
Ta có : AC = AD + DC
4 = 1,5 + DC
\(\Rightarrow DC=2,5\)cm
Xét \(\Delta AHB\) và \(\Delta CAB\) có :
\(\widehat{AHB}\)\(=\)\(\widehat{CAB}\) ( cùng bằng 900 )
\(\widehat{B}\) chung
\(\Rightarrow\)\(\Delta AHB\)\(~\)\(\Delta CAB\) ( g - g )
Do \(\Delta AHB\) \(~\)\(\Delta CAB\)
\(\Rightarrow\)\(\frac{AB}{BH}=\frac{BC}{AB}\)\(\Rightarrow\)\(AB.AB=BH.BC\)\(\Rightarrow\)\(AB^2=BH.BC\)
a: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng vơi ΔBHA
b: BH=15^2/25=9(cm)
c: EH/EB=AH/AB=AC/BC
=>EH*BC=EB*AC
Do E là chân đường phân giác góc D, theo định lý phân giác:
\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)
\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA\(\sim\)ΔABC
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\)(hệ thức lượng)
c: \(AB=\sqrt{BC^2-AC^2}=12\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{AB^2-AH^2}=7.2\left(cm\right)\)