Cho biết điểm \(M\left(a;-0,2\right)\) thuộc đồ thị của hàm số \(y=4x\). Khi đó, a bằng :
(A) \(-1\) (B) \(-0,5\) (C) \(-0,05\) (D) \(0,05\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=căn 5
AB: (x-1)/1=(y-3)/-2
=>2x+y-5=0
M thuộc Δ nên M(m;2-m)
\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)
\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)
=>|m-3|=8
=>m=11(nhận) hoặc m=-5(loại)
=>M(11;-9)
=>3a+5b=3*11+5*(-9)=-12
a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)
b, Có lẽ là M trên tia Ox .
Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)
=> M là trung điểm của AB .
Vì đồ thị hàm số y=ax+by=ax+b đi qua điểm A(−1;2)A(−1;2) nên ta có:
2=−1.a+b2=−1.a+b suy ra −a+b=2−a+b=2
Vi đồ thị hàm số y=ax+by=ax+b đi qua điểm B(1;4)B(1;4) nên ta có:
4=1.a+b4=1.a+b suy ra a+b=4(2)a+b=4(2)
Từ (1) và (2) ta tìm được a=1;b=3a=1;b=3
Vậy hàm số cần tìm là y=x+3y=x+3.
a) Thay y=8 vào \(\left(P\right):y=\frac{-x^2}{2}\):
\(8=\frac{-x^2}{2}\Rightarrow x=\pm4\)
Vậy M(4;8) hoặc (-4;8).
b) \(\frac{-x^2}{2}=x+m\)
\(\Leftrightarrow-x^2-2x-2m=0\)
\(\Leftrightarrow x^2+2x+2m=0\)
Để (d) cắt (P) tại 2 điểm pb thì Δ>0
\(\Rightarrow4-8m>0\Leftrightarrow m< \frac{1}{2}\)
Có: \(y_1=x_1+m;y_2=x_2+m\)
\(\Rightarrow\left(x_1+y_1\right)\left(x_2+y_2\right)=\frac{33}{4}\)
\(\Rightarrow\left(2x_1+m\right)\left(2x_2+m\right)=\frac{33}{4}\)
\(\Leftrightarrow4x_1x_2+2x_1m+2x_2m+m^2=\frac{33}{4}\)
\(\Leftrightarrow4x_1x_2+2m\left(x_1+x_2\right)+m^2=\frac{33}{4}\)
Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=2m\end{matrix}\right.\)
\(\Rightarrow8m-4m+m^2=\frac{33}{4}\)
\(\Leftrightarrow m^2+4m=\frac{33}{4}\)
\(\Leftrightarrow m^2+4m-\frac{33}{4}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{3}{2}\left(KTM\right)\\m=\frac{-11}{2}\left(TM\right)\end{matrix}\right.\)
Vậy m=\(\frac{-11}{2}\) thỏa mãn.
tham khảo:
a) Vì SA⊥(ABCD) nên SA⊥CD
Ta có: DC⊥AD;DC⊥SA nên DC⊥(SAD)
b) Vì SA⊥(ABCD) nên SA⊥CM
Ta có: AB = 2CD nên AM = CD. Suy ra AMCD là hình chữ nhật nên CM⊥AB
Mà CM⊥SA
Suy ra: CM⊥(SAB)
Xin lỗi các bạn. Đề bài đúng phải là so sánh BD với \(\sqrt{\left(d-r\right)\left(d+r\right)}\)
Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)
Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)
Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)
Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)
\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)
(1);(2) \(\Rightarrow BD=ME\)
Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)
Áp dụng định lý Pitago:
\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)
\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)
Có MC=2MI mà MI là đường trung tuyến của của \(\Delta ABC\)
=>M là trọng tâm của tam giác ABC=>A,M,H thẳng hàngTrong mp(SAH)có :AN=2NS;AM=2MH=>MN//SH (Thales)Mà \(SH\perp\left(ABC\right)\);SH ko thuộc (ABC)=>MN vuông góc với (ABC)
P/s: Gợi ý này ok rồi nhé :> Mà sao ko thấy kí hiệu "ko thuộc" nhờ :v
Hình như tui nhấn Shift+Enter nên nó ko nhảy dòng rồi -.- Thôi kệ đi, bạn xem tạm nhé
a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)
\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)
Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0
hay m<>2
b: \(\left|x_A-x_B\right|< 3\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)
\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)
\(\Leftrightarrow\left(m-2\right)^2-3< 0\)
=>(m+1)(m-5)<0
=>-1<m<5
kết quả là (C) -0,05