K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

kết quả là (C) -0,05

AB=căn 5

AB: (x-1)/1=(y-3)/-2

=>2x+y-5=0

M thuộc Δ nên M(m;2-m)

\(d\left(M;AB\right)=\dfrac{\left|m-3\right|}{\sqrt{5}}\)

\(S_{AMB}=\dfrac{1}{2}\cdot MH\cdot AB=4\)

=>|m-3|=8

=>m=11(nhận) hoặc m=-5(loại)

=>M(11;-9)

=>3a+5b=3*11+5*(-9)=-12

22 tháng 6 2021

a, Ta có : \(AB=OA-OB=a-b\left(cm\right)\)

b, Có lẽ là M trên tia Ox .

Ta có : \(OM=\dfrac{1}{2}\left(a+b\right)\)

=> M là trung điểm của AB .

22 tháng 6 2021

bạn ơi hình như sai ấy ạ :,<<

a: M,N,P đều nằm trên trục tung

b; Hoành độ bằng 0

DT
9 tháng 12 2023

loading... 

16 tháng 12 2024

Vì đồ thị hàm số y=ax+by=ax+b đi qua điểm A(−1;2)A(1;2) nên ta có:

   2=−1.a+b2=1.a+b suy ra −a+b=2a+b=2

Vi đồ thị hàm số y=ax+by=ax+b đi qua điểm B(1;4)B(1;4) nên ta có:

   4=1.a+b4=1.a+b suy ra a+b=4(2)a+b=4(2)

Từ (1) và (2) ta tìm được a=1;b=3a=1;b=3

Vậy hàm số cần tìm là y=x+3y=x+3.

7 tháng 3 2019

a) Thay y=8 vào \(\left(P\right):y=\frac{-x^2}{2}\):

\(8=\frac{-x^2}{2}\Rightarrow x=\pm4\)

Vậy M(4;8) hoặc (-4;8).

b) \(\frac{-x^2}{2}=x+m\)

\(\Leftrightarrow-x^2-2x-2m=0\)

\(\Leftrightarrow x^2+2x+2m=0\)

Để (d) cắt (P) tại 2 điểm pb thì Δ>0

\(\Rightarrow4-8m>0\Leftrightarrow m< \frac{1}{2}\)

Có: \(y_1=x_1+m;y_2=x_2+m\)

\(\Rightarrow\left(x_1+y_1\right)\left(x_2+y_2\right)=\frac{33}{4}\)

\(\Rightarrow\left(2x_1+m\right)\left(2x_2+m\right)=\frac{33}{4}\)

\(\Leftrightarrow4x_1x_2+2x_1m+2x_2m+m^2=\frac{33}{4}\)

\(\Leftrightarrow4x_1x_2+2m\left(x_1+x_2\right)+m^2=\frac{33}{4}\)

Theo hệ thức Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=2m\end{matrix}\right.\)

\(\Rightarrow8m-4m+m^2=\frac{33}{4}\)

\(\Leftrightarrow m^2+4m=\frac{33}{4}\)

\(\Leftrightarrow m^2+4m-\frac{33}{4}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=\frac{3}{2}\left(KTM\right)\\m=\frac{-11}{2}\left(TM\right)\end{matrix}\right.\)

Vậy m=\(\frac{-11}{2}\) thỏa mãn.

21 tháng 8 2023

tham khảo:

Bài tập 1 trang 64 Toán 11 tập 2 Chân trời

a) Vì SA⊥(ABCD) nên SA⊥CD

Ta có: DC⊥AD;DC⊥SA nên DC⊥(SAD)

b) Vì SA⊥(ABCD) nên SA⊥CM

Ta có: AB = 2CD nên AM = CD. Suy ra AMCD là hình chữ nhật nên CM⊥AB

Mà CM⊥SA

Suy ra: CM⊥(SAB)

26 tháng 12 2021

Xin lỗi các bạn. Đề bài đúng phải là so sánh BD với \(\sqrt{\left(d-r\right)\left(d+r\right)}\)

27 tháng 12 2021

Gọi E là trung điểm AB \(\Rightarrow OE\perp AB\)

Do D là trung điểm BC \(\Rightarrow BD=\dfrac{1}{2}BC\) (1)

Do C đối xứng A qua M \(\Rightarrow AM=\dfrac{1}{2}AC\)

Do E là trung điểm AB \(\Rightarrow AE=\dfrac{1}{2}AB\)

\(\Rightarrow AM+AE=\dfrac{1}{2}AC+\dfrac{1}{2}AB\Rightarrow ME=\dfrac{1}{2}BC\) (2)

(1);(2) \(\Rightarrow BD=ME\)

Trong tam giác vuông OAE, do OA là cạnh huyền và OE là cạnh góc vuông \(\Rightarrow OE< OA\Rightarrow OE< r\)

Áp dụng định lý Pitago:

\(ME^2=OM^2-OE^2=d^2-OE^2>d^2-r^2\)

\(\Rightarrow BD^2>d^2-r^2\Rightarrow BD>\sqrt{\left(d-r\right)\left(d+r\right)}\)

18 tháng 1 2021

Có MC=2MI mà MI là đường trung tuyến của của \(\Delta ABC\) 

=>M là trọng tâm của tam giác ABC=>A,M,H thẳng hàngTrong mp(SAH)có :AN=2NS;AM=2MH=>MN//SH (Thales)Mà \(SH\perp\left(ABC\right)\);SH ko thuộc (ABC)=>MN vuông góc với (ABC)

P/s: Gợi ý này ok rồi nhé :> Mà sao ko thấy kí hiệu "ko thuộc" nhờ :v

18 tháng 1 2021

Hình như tui nhấn Shift+Enter nên nó ko nhảy dòng rồi -.- Thôi kệ đi, bạn xem tạm nhé

a: Phương trình hoành độ giao điểm là: \(x^2-mx+m-1=0\)

\(\Delta=\left(-m\right)^2-4\cdot\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-2<>0

hay m<>2

b: \(\left|x_A-x_B\right|< 3\)

\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< 3\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2< 9\)

\(\Leftrightarrow m^2-4\left(m-1\right)< 9\)

\(\Leftrightarrow\left(m-2\right)^2-3< 0\)

=>(m+1)(m-5)<0

=>-1<m<5