Bài tập : Phân tích thành nhân tử
a, x4+6x2y+9y2-1
b, 2x2+3x-5
c, x2-7xy+10y2
Giải hộ mình vs =)))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Ta có: \(x^4-2x^3+2x-1\)
\(=\left(x^4-1\right)-2x\left(x^2-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x+1\right)-2x\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\cdot\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\cdot\left(x-1\right)^3\)
h) Ta có: \(3x^2-3y^2-2\left(x-y\right)^2\)
\(=3\left(x^2-y^2\right)-2\left(x-y\right)^2\)
\(=3\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=\left(x-y\right)\left(3x+3y-2x+2y\right)\)
\(=\left(x-y\right)\left(x+5y\right)\)
a) Ta có: \(x^2-y^2-2x-2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2\left(x+2y\right)-x-2y\)
\(=\left(x+2y\right)\left(x^2-1\right)\)
\(=\left(x+2y\right)\left(x-1\right)\left(x+1\right)\)
a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)
b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)
c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)
d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
a) Ta có: \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
b) Ta có: \(x^3+2x^2+2x+1\)
\(=\left(x^3+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+x+1\right)\)
Bài 2:
a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)
b: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c:\(-6x^2+7x-2\)
\(=-6x^2+3x+4x-2\)
\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)
\(=\left(2x-1\right)\left(-3x+2\right)\)
1.
a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)
b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)
\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)
2.
a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)
c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)
3.
b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)
4.
a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
a/ 2x^2 (x – 1) + 4x (1 – x)
= 2x^2(x – 1) – 4x (x – 1)
= (x – 1)( 2x^2 – 4x)
=2x(x – 1)(x – 2)
a.
$x^2-y^2-2x+2y=(x^2-y^2)-(2x-2y)=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)$
b.
$x^2(x-1)+16(1-x)=x^2(x-1)-16(x-1)=(x-1)(x^2-16)=(x-1)(x-4)(x+4)$
c.
$x^2+4x-y^2+4=(x^2+4x+4)-y^2=(x+2)^2-y^2=(x+2-y)(x+2+y)$
d.
$x^3-3x^2-3x+1=(x^3+1)-(3x^2+3x)=(x+1)(x^2-x+1)-3x(x+1)$
$=(x+1)(x^2-4x+1)$
e.
$x^4+4y^4=(x^2)^2+(2y^2)^2+2.x^2.2y^2-4x^2y^2$
$=(x^2+2y^2)^2-(2xy)^2=(x^2+2y^2-2xy)(x^2+2y^2+2xy)$
f.
$x^4-13x^2+36=(x^4-4x^2)-(9x^2-36)$
$=x^2(x^2-4)-9(x^2-4)=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)$
g.
$(x^2+x)^2+4x^2+4x-12=(x^2+x)^2+4(x^2+x)-12$
$=(x^2+x)^2-2(x^2+x)+6(x^2+x)-12$
$=(x^2+x)(x^2+x-2)+6(x^2+x-2)=(x^2+x-2)(x^2+x+6)$
$=[x(x-1)+2(x-1)](x^2+x+6)=(x-1)(x+2)(x^2+x+6)$
h.
$x^6+2x^5+x^4-2x^3-2x^2+1$
$=(x^6+2x^5+x^4)-(2x^3+2x^2)+1$
$=(x^3+x^2)^2-2(x^3+x^2)+1=(x^3+x^2-1)^2$
a) x4+2x2+1=(x2+1)2
b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)
c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)
d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)
\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)
\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)
\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)
\(a,a^2\left(a-b\right)+ab\left(a-c\right)=a\left(a+b\right)\left(a-c\right)\\ c,=\left(x^2-2x+1\right)\left(x^2+2x+1\right)=\left(x-1\right)^2\left(x+1\right)^2\\ b,=\left(x-5\right)^2-9y^2=\left(x-5-3y\right)\left(x-5+3y\right)\\ d,=4\left(x^2-9x+14\right)=4\left(x-7\right)\left(x-2\right)\)
\(a,=xy\left(-6x+y\right)\)
\(b,=10c\left(a^2-9b^2+3bc-ac\right)=10c\left[\left(a-3b\right)\left(a+3b\right)-c\left(a-3b\right)\right]\)
\(=10c\left[\left(a-3b\right)\left(a+3b-c\right)\right]\)
c,\(=a\left(x-c\right)-b\left(x-c\right)=\left(a-b\right)\left(x-c\right)\)
d,\(=-\left(x-2y-6\right)\left(x-2y+6\right)\)
e;\(=m^2+4m+mn+n^2+4n+mn=m\left(m+4+n\right)+n\left(m+4+n\right)\)\(=\left(m+n\right)\left(m+n+4\right)\)
f,\(=\dfrac{1}{2}\left(4x^2-y^2\right)=\dfrac{1}{2}\left(2x-y\right)\left(2x+y\right)\)
a) x⁴ + 2x² + 1
= (x²)² + 2.x².1 + 1²
= (x² + 1)²
b) 4x² - 12xy + 9y²
= (2x)² - 2.2x.3y + (3y)²
= (2x - 3y)²
c) -x² - 2xy - y²
= -(x² + 2xy + y²)
= -(x + y)²
d) (x + y)² - 2(x + y) + 1
= (x + y)² - 2.(x + y).1 + 1²
= (x - y + 1)²
e) x³ - 3x² + 3x - 1
= x³ - 3.x².1 + 3.x.1² - 1³
= (x - 1)³
g) x³ + 6x² + 12x + 8
= x³ + 3.x².2 + 3.x.2² + 2³
= (x + 2)³
h) x³ + 1 - x² - x
= (x³ + 1) - (x² + x)
= (x + 1)(x² - x + 1) - x(x + 1)
= (x + 1)(x² - x + 1 - x)
= (x + 1)(x² - 2x + 1)
= (x + 1)(x - 1)²
k) (x + y)³ - x³ - y³
= (x + y)³ - (x³ + y³)
= (x + y)³ - (x + y)(x² - xy + y²)
= (x + y)[(x + y)² - x² + xy - y²]
= (x + y)(x² + 2xy + y² - x² + xy - y²)
= (x + y).3xy
= 3xy(x + y)
a) x4 + 6x2y + 9y2 - 1
= (x2 + 3y)2 - 1
= (x2 + 3y + 1)(x2 + 3y - 1)
b) 2x2 + 3x - 5
= 2x2 - 2x + 5x - 5
= 2x(x - 1) + 5(x - 1)
= (2x + 5)(x - 1)
c) x2 - 7xy + 10y2
= x2 - 2xy - 5xy + 10y2
= x(x - 2y) - 5y(x - 2y)
= (x - 5y)(x - 2y)
a, \(x^4+6x^2y+9y^2-1\)
\(=\left(x^2+3y\right)^2-1\)
\(=\left(x^2+3y-1\right)\left(x^2+3y+1\right)\)
b, \(2x^2+3x-5\)
\(=2x^2-2x+5x-5\)
\(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)
c, \(x^2-7xy+10y^2\)
\(=x^2-4xy+4y^2-3xy+6y^2\)
\(=\left(x-2y\right)^2-3y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-5y\right)\)