K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

8 tháng 5 2017

2013 ko mũ 2 nhìn lại đề

27 tháng 3 2018

đơn giản quá!

27 tháng 3 2018

Bạn có bt làm bài 5 ko?

18 tháng 2 2021

\(\dfrac{1}{1\cdot2}>\dfrac{1}{2^2}>\dfrac{1}{2\cdot3},\dfrac{1}{2\cdot3}>\dfrac{1}{3^2}>\dfrac{1}{3\cdot4},...,\dfrac{1}{8\cdot9}>\dfrac{1}{9^2}>\dfrac{1}{9\cdot10}\)

\(\Rightarrow\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{8\cdot9}>\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{9^2}>\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\) \(\Rightarrow1-\dfrac{1}{9}>A>\dfrac{1}{2}-\dfrac{1}{10}\) \(\Rightarrow\dfrac{8}{9}>A>\dfrac{2}{5}\)

15 tháng 3 2018

Ta có :

\(\dfrac{1}{5^2}< \dfrac{1}{4.5}\)

\(\dfrac{1}{6^2}< \dfrac{1}{5.6}\)

....................

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+........+\dfrac{1}{100^2}< \dfrac{1}{4.5}+\dfrac{1}{5.6}+.....+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+.....+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\left(1\right)\)

Lại có :

\(\dfrac{1}{5^2}>\dfrac{1}{5.6}\)

\(\dfrac{1}{6^2}>\dfrac{1}{6.7}\)

............

\(\dfrac{1}{100^2}>\dfrac{1}{100.101}\)

\(\Leftrightarrow\dfrac{1}{5^2}+\dfrac{1}{6^2}+......+\dfrac{1}{100^2}>\dfrac{1}{5.6}+\dfrac{1}{6.7}+.....+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+.....+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrowđpcm\)

26 tháng 1 2018

Đặt: \(A=\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\left\{{}\begin{matrix}A>\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{100.101}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{5}-\dfrac{1}{101}>\dfrac{1}{6}\\A< \dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{99.100}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{4}-\dfrac{1}{100}< \dfrac{1}{4}\end{matrix}\right.\)

Vậy \(\dfrac{1}{6}< A< \dfrac{1}{4}\)

8 tháng 5 2022

\(B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2013^2}\)

Ta có ; 

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...

\(\dfrac{1}{2013^2}< \dfrac{1}{2012.2013}\)

\(\Rightarrow B=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2013^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2012.2013}\)

\(\Rightarrow B< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2012}-\dfrac{1}{2013}\)

\(\Leftrightarrow B< 1-\dfrac{1}{2013}\)

\(\Rightarrow B< \dfrac{2012}{2013}\)

Lại có : \(\dfrac{2012}{2013}< \dfrac{3}{4}\)

\(\Rightarrow B< \dfrac{3}{4}\)

* Chắc vậy, sai thì thôg cảm ^^ * 

Còn j k hiểu thì ib nha

4 tháng 1 2018

post đúng lớp hoặc autodelete

22 tháng 3 2018

a=\(\dfrac{1}{2}\cdot\dfrac{3}{4}\cdot\dfrac{5}{6}\cdot\dfrac{7}{8}\cdot...\cdot\dfrac{79}{80}\)

a<\(\dfrac{2}{3}\cdot\dfrac{4}{5}\cdot\dfrac{6}{7}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{80}{81}\)

\(\text{a}^2< \dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot\dfrac{5}{6}\cdot\dfrac{6}{7}\cdot\dfrac{7}{8}\cdot\dfrac{8}{9}\cdot...\cdot\dfrac{79}{80}\cdot\dfrac{80}{81}\)

\(\Rightarrow\text{a}^2< \dfrac{1}{81}=\left(\dfrac{1}{9}\right)^2\)

\(\Rightarrow\text{a}< \dfrac{1}{9}\)(dpcm)

Nho tich cho mk nhe

22 tháng 3 2018

thanks bn nha

haha