K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 8 2021

Đặt \(x^3-3x^2+mx-1=f\left(x\right)\).

Để \(\left|f\left(x\right)\right|\)có \(5\)điểm cực trị thì phương trình \(f\left(x\right)=0\)có ba nghiệm phân biệt. 

\(x^3-3x^2+mx-1=0\)

\(\Leftrightarrow m=\frac{-x^3+3x^2+1}{x}=g\left(x\right)\)(vì \(x=0\)không là nghiệm của phương trình) 

\(g'\left(x\right)=-\frac{2x^3-3x^2+1}{x^2}\)

\(g'\left(x\right)=0\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(có \(x=1\)là nghiệm kép) 

\(g'\left(x\right)\)không xác định khi \(x=0\).

BBT (bạn tự vẽ). 

Từ BBT ta thấy \(g\left(x\right)=m\)có ba nghiệm phân biệt khi \(m< \frac{-15}{4}\).

Vậy \(m< -\frac{15}{4}\).

9 tháng 11 2019

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

NV
30 tháng 6 2021

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

29 tháng 9 2015

bước 1: ta tính y'

bước 2: giải pt y'=0 tìm ra xi

bước 3 tính y''

để hàm số có cực đại thì y''(xi)<0

đểhàm số có cực tiểu thì y''(xi)>0

giả các pt ta tìm đc điều kiện của m hàm số có cực đại, cực tiểu

27 tháng 6 2018

Chọn đáp án A.

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.