căn (că 7 -3)2 +căn 4-2cawn3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{8}-2\sqrt{32}+3\sqrt{50}\)
= \(\sqrt{2.2^2}-2\sqrt{4^2.2}+3\sqrt{5^2.2}\)
= \(2\sqrt{2}-8\sqrt{2}+15\sqrt{2}\)
= \(9\sqrt{2}\)
\(\dfrac{1}{3}+\sqrt{2}-\dfrac{1}{3}-\sqrt{2}\)
= \(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\left(\sqrt{2}-\sqrt{2}\right)\)
= 0
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=3\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy nghiệm duy nhất của pt là 10.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\)
Vậy nghiệm duy nhất của pt là 4
\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)
\(\Leftrightarrow|x-1|=9\)
\(\Leftrightarrow x-1=\pm9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)
\(=1\)
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)
=0
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)
\(=-2\sqrt{3}-5+6+2\sqrt{3}\)
=1
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)
b: \(\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{7}+2-\sqrt{7}+\sqrt{3}=2+\sqrt{3}\)
6: \(=3\cdot2\sqrt{3}-4\cdot3\sqrt{3}+5\cdot4\sqrt{3}=14\sqrt{3}\)
7: \(=2\sqrt{3}+5\sqrt{3}-4\sqrt{3}=3\sqrt{3}\)
8: \(=2\cdot4\sqrt{2}+4\cdot2\sqrt{2}-5\cdot3\sqrt{2}=\sqrt{2}\)
9: \(=3\cdot2\sqrt{5}-2\cdot3\sqrt{5}+4\sqrt{5}=4\sqrt{5}\)
10: \(=2\cdot2\sqrt{6}-2\cdot3\sqrt{6}+3\sqrt{6}-5\sqrt{6}=-4\sqrt{6}\)
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
\(\sqrt{\left(\sqrt{7}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\left|3-\sqrt{7}\right|+\sqrt{\left(\sqrt{3}-1\right)^2}=\left|3-\sqrt{7}\right|+\left|\sqrt{3}-1\right|\)
\(=3-\sqrt{7}+\sqrt{3}-1=2-\sqrt{7}+\sqrt{3}\)
\(\sqrt{\left(\sqrt{7}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
\(=\left|\sqrt{7}-3\right|+\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}+1}\)
\(=\left|\sqrt{7}-3\right|+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\left|\sqrt{7}-3\right|+\left|\sqrt{3}-1\right|\)
\(=3-\sqrt{7}+\sqrt{3}-1\) (vì \(\sqrt{7}-3< 0;\sqrt{3}-1>0\))
\(=2-\sqrt{7}+\sqrt{3}\)