Tìm GTNN của biểu thức sau :
\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 câu này bạn áp dụng cái này nhé.
`a^2 >=0 forall a`.
`|a| >=0 forall a`.
`1/a` xác định `<=> a ne 0`.
a: P=(x+30)^2+(y-4)^2+1975>=1975 với mọi x,y
Dấu = xảy ra khi x=-30 và y=4
b: Q=(3x+1)^2+|2y-1/3|+căn 5>=căn 5 với mọi x,y
Dấu = xảy ra khi x=-1/3 và y=1/6
c: -x^2-x+1=-(x^2+x-1)
=-(x^2+x+1/4-5/4)
=-(x+1/2)^2+5/4<=5/4
=>R>=3:5/4=12/5
Dấu = xảy ra khi x=-1/2
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\)
nên \(\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\dfrac{25}{16}\)
Dấu '=' xảy ra khi x=-1/2
Có \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\ge\dfrac{5}{4}\forall x\)
\(A=\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{4}\right]^2\ge\left(\dfrac{5}{4}\right)^2=\dfrac{25}{16}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy min \(A=\dfrac{25}{16}\Leftrightarrow x=\dfrac{-1}{2}\)
ĐKXĐ: \(x\notin\left\{-1;-\dfrac{1}{2}\right\}\)
a) Ta có: \(P=\left(\dfrac{2x}{x^3+x^2+x+1}+\dfrac{1}{x+1}\right):\left(1+\dfrac{x}{x+1}\right)\)
\(=\left(\dfrac{2x}{\left(x+1\right)\left(x^2+1\right)}+\dfrac{x^2+1}{\left(x^2+1\right)\left(x+1\right)}\right):\left(\dfrac{x+1+x}{x+1}\right)\)
\(=\dfrac{x^2+2x+1}{\left(x+1\right)\left(x^2+1\right)}:\dfrac{2x+1}{x+1}\)
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2+1\right)}\cdot\dfrac{x+1}{2x+1}\)
\(=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\)
b) Vì \(x=\dfrac{1}{4}\) thỏa mãn ĐKXĐ
nên Thay \(x=\dfrac{1}{4}\) vào biểu thức \(P=\dfrac{x^2+2x+1}{\left(2x+1\right)\left(x^2+1\right)}\), ta được:
\(P=\left[\left(\dfrac{1}{4}\right)^2+2\cdot\dfrac{1}{4}+1\right]:\left[\left(2\cdot\dfrac{1}{4}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\left(\dfrac{1}{16}+\dfrac{1}{2}+1\right):\left[\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{16}+1\right)\right]\)
\(=\dfrac{25}{16}:\dfrac{51}{32}=\dfrac{25}{16}\cdot\dfrac{32}{51}=\dfrac{50}{51}\)
Vậy: Khi \(x=\dfrac{1}{4}\) thì \(P=\dfrac{50}{51}\)
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
Gợi ý: \(\dfrac{a^4+b^4}{2}\ge\left(\dfrac{a+b}{2}\right)^4\)
Ta có \(a^4+b^4\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left(\dfrac{\left(a+b\right)^2}{2}\right)^2}{2}=\dfrac{\left(a+b\right)^4}{8}\). Áp dụng cho biểu thức A, suy ra \(A\ge\dfrac{\left(x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\right)^4}{8}\). Ta tìm GTNN của \(P=x^2+\dfrac{1}{x^2}+y^2+\dfrac{1}{y^2}+2\). Ta có
\(P=x^2+\dfrac{1}{16x^2}+y^2+\dfrac{1}{16y^2}+\dfrac{15}{16}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2\)
\(P\ge2\sqrt{x^2.\dfrac{1}{16x^2}}+2\sqrt{y^2.\dfrac{1}{16y^2}}+\dfrac{15}{16}\left(\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2}{2}\right)+2\)
\(=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{15}{16}.\left(\dfrac{4^2}{2}\right)+2\) \(=\dfrac{21}{2}\). Do đó \(P\ge\dfrac{21}{2}\) \(\Leftrightarrow A\ge\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\). Vậy GTNN của A là \(\dfrac{\left(\dfrac{17}{2}+2\right)^4}{8}\), ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(D=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)
\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-\left(x+\dfrac{1}{4}\right)\right|\)
\(=\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|-x-\dfrac{1}{4}\right|\)
\(\ge x+\dfrac{1}{2}+0-x-\dfrac{1}{4}=\dfrac{1}{4}\)
Đẳng thức xảy ra khi \(x=-\dfrac{1}{3}\)
Vậy với \(x=-\dfrac{1}{3}\) thì \(D_{Min}=\dfrac{1}{4}\)
Ta có : | x + 1/2 | > hoặc = 0
| x + 1/3 | > hoặc = 0
| x + 1/4 | > hoặc = 0
=> D = | x + 1/2 | + | x + 1/3 | + | x + 1/4 | > hoặc = 0
Dấu " = " xảy ra khi D = 0
Vậy GTNN của biểu thức D là 0