K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

+) Trong tam giác vuông A’B’C’ có \(\widehat{A'}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

A′B′2+A′C′2 =B′C′2

=> A′C′2=B′C′2−A′B′2=152−92=144

=> A’C’ =12 (cm)

Trong tam giác vuông ABC có \(\widehat{A}=90^0\)

Áp dụng định lí Pi-ta-go, ta có:

BC2=AB2+AC2= 62+82=100

Suy ra: BC = 10 (cm)

Ta có: \(\dfrac{A'B'}{AB}=\dfrac{9}{6}=\dfrac{3}{2}\)

\(\dfrac{A'C'}{AC}=\dfrac{12}{8}=\dfrac{3}{2}\)

\(\dfrac{B'C'}{BC}=\dfrac{15}{10}=\dfrac{3}{2}\)

Suy ra: \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=\dfrac{3}{2}\)

Vậy ∆ A’B’C’ đồng dạng với ∆ ABC

20 tháng 2 2019

a)Theo đề: BC/B'C'=10/5=1/2

a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.

Ta có  ΔABC1=ΔA'B'C'

Suy ra B′C′=BC1

Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.

Vì AC > AC1 nên BC > BC1.

Suy ra BC > B'C'.

b: 

-Giả sử AC<A'C'.

Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).

Suy ra BC=B'C'.

Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta thấy AC = 4 cm; A’C’ = 4 cm.

Vậy AC = A’C’.

17 tháng 9 2023

Xét hai tam giác vuông: ∆ABC và ∆A'B'C' có:

BC = B'C' = 5 cm

AB = A'B' = 3 cm

⇒ ∆ABC = ∆A'B'C' (cạnh huyền - cạnh góc vuông)

⇒ AC = A'C' (hai cạnh tương ứng)

29 tháng 4 2018

a)   Ta có:   \(\frac{4}{8}=\frac{5}{10}=\frac{6}{12}\left(=\frac{1}{2}\right)\)

hay   \(\frac{AB}{A'B'}=\frac{AC}{A'C'}=\frac{BC}{B'C'}\)

\(\Rightarrow\)\(\Delta A'B'C'~\Delta ABC\) 

b)   \(\Delta A'B'C'~\Delta ABC\)

\(\Rightarrow\)\(\frac{P_{A'B'C'}}{P_{ABC}}=\frac{A'B'}{AB}=\frac{8}{4}=2\)

Xin chào các bạn !!!
Hãy Đăng Kí Cho Channel Kaito1412_TV Để nhé !

Link là : https://www.youtube.com/channel/UCqgS-egZEJIX-ON873XpD_Q/videos?view_as=subscriber

11 tháng 4 2017

* Trong tam giác vuông A’B’C’ có  ∠ A ' = 90 0

Áp dụng định lí Pi-ta-go, ta có: A ' B ' 2 + A ' C ' 2 = B ' C ' 2

Suy ra:  A ' C ' 2 = B ' C ' 2 - A ' B ' 2  = 15 2 - 9 2  = 144

Suy ra: A’C’ = 12 (cm)

* Trong tam giác vuông ABC có  ∠ A = 90 0

Áp dụng định lí Pi-ta-go, ta có: B C 2 = A B 2 + A C 2 = 6 2 + 8 2  =100

Suy ra: BC = 10 (cm)

Ta có: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy △ A’B’C’ đồng dạng ΔABC (c.c.c)

2 tháng 10 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.

16 tháng 8 2018

Dùng phản chứng:

- Giả sử AC < A'C'. Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.

Giả sử AC = A'C'. Khi đó ta có ΔABC = ΔA'B'C' (c.g.c). Suy ra BC = B'C'.

Điều này cũng không đúng với giả thiết BC > B'C'. Vậy ta phải có AC > A'C'.

(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)

Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)

Trong tam giác vuông A'B'C' có B'C' 2= A'B' 2+ A'C' 2 (2)

Theo giả thiết AB = A'B' nên từ (1) và (2) ta có:

- Nếu AC > A'C' thì AC 2 > A'C' 2, suy ra BC 2 > B'C' 2 hay BC > B'C'

- Nếu BC > B'C' thì BC 2 > B'C' 2, suy ra AC 2 > A'C' 2 hay AC > A'C'.