Cho a.b.c=1 và a+b+c>1/a+1/b+1/c
Chứng minh rằng (a-1).(b-1).(c-1)>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) là ( 1)
Ta có : \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\dfrac{c}{ab}-\dfrac{a}{bc}-\dfrac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 2 )
BĐT ( 2 ) đúng . Từ đây ta có thể thấy BĐt ( 1 ) cũng đúng :D
Từ (a-1)(b-1)(c-1)>0 (*)
<=>(ab-b-a+1)(c-1)>0
<=> abc-ab-bc+b-ac+a+c-1>0
<=> a+b+c-ab-ac-bc>0
<=> a+b+c-\(\dfrac{abc}{c}-\dfrac{abc}{b}-\dfrac{abc}{a}\)>0
<=> a+b+c - \(\dfrac{1}{c}-\dfrac{1}{b}-\dfrac{1}{a}>0\)
<=> \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( 1)
(1) đúng => (*) đúng
Sửa đề: Chứng minh \(abc\le\dfrac{1}{8}\)
Ta có
\(\dfrac{1}{1+a}=\left(1-\dfrac{1}{1+b}\right)+\left(1-\dfrac{1}{1+c}\right)\)
\(=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\) (1)
Tương tự \(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ca}{\left(1+c\right)\left(1+a\right)}}\) (2)
và \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+b\right)}}\) (3)
Nhân (1), (2), (3) với nhau:
\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Rightarrow abc\le\dfrac{1}{8}\)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{2}\)
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
\(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)
\(\Leftrightarrow\frac{1}{1+a}\ge\frac{b}{1+b}+\frac{c}{1+c}\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
Tương tự:
\(\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\left(3\right)\)
Nhân (1),(2) và (3) theo vế:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge8\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow1\ge8abc\Rightarrow abc\le\frac{1}{8}\)
Dấu "=" xảy ra khi a=b=c=1/2
Ta có: \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\)
\(=\left(ab-a-b+1\right)\left(c-1\right)>0\)
\(=a+b+c-ab-bc-ca>0\)
\(=a+b+c-\frac{c}{ab}-\frac{a}{bc}-\frac{b}{ac}>0\)
\(\Leftrightarrow a+b+c>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (Đúng)
Vậy \(\left(a-1\right)\left(b-1\right)\left(c-1\right)>0\) (Đpcm)