Chứng tỏ các phương trình sau vô nghiệm :
a) \(\left|2x+3\right|=2x+2\)
b) \(\left|5x-3\right|=5x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy ý này bản chất ko khác nhau nhé, mình làm mẫu, bạn làm tương tự mấy ý kia nhé
a, \(\left|5x\right|=x+2\)
Với \(x\ge0\)thì \(5x=x+2\Leftrightarrow x=\dfrac{1}{2}\)
Với \(x< 0\)thì \(5x=-x-2\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\)
b, \(\left|7x-3\right|-2x+6=0\Leftrightarrow\left|7x-3\right|=2x-6\)
Với \(x\ge\dfrac{3}{7}\)thì \(7x-3=2x-6\Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\)( ktm )
Với \(x< \dfrac{3}{7}\)thì \(7x-3=-2x+6\Leftrightarrow9x=9\Leftrightarrow x=1\)( ktm )
Vậy phương trình vô nghiệm
a)(2x+1)(3x-2)=(5x-8)(2x+1)
⇔(2x+1)(3x-2)-(5x-8)(2x+1)=0
⇔(2x+1)(3x-2-5x+8)=0
⇔(2x+1)(-2x+6)=0
⇔2x+1=0 hoặc -2x+6=0
1.2x+1=0⇔2x=-1⇔x=-1/2
2.-2x+6=0⇔-2x=-6⇔x=3
phương trình có 2 nghiệm x=-1/2 và x=3
\(a, 2x^2 + 5x + 10 = x^2 + 5x - 11\)
\(<=> x^2 + 21 = 0 \)
\(Do x^2 + 21 > 0\)
=> Pt vô nghiệm
\(b, 2x^2 - 6x + 7 = 0\)
\(<=> 2(x^2 - 3x+7/2)=0\)
\(<=> (x-3/2)^2 +7/4 = 0 \)
Tương tự như trên thì pt vô nghiệm
\(c, |x^2 + 3x+20| + |x-3| = 0\)
Ta có : \(|x^2 + 3x+20| = |(x+3/2)^2 + 17,75| > 0\)
\(=> |x^2 + 3x+20| + |x-3| > 0\)
=> Pt vô nghiệm
a/ ta có: 2(x+1)=3+2x
=> 2x +2 = 3+ 2x
=>2x-2x=3-2
=>0=1 (vô lí) =>đpcm
b/ 2(1-1,5x)+3x=0 =>2-3x+3x=0
=>0=-2 (vô lí ) =>đpcm
c/ vô nghiệm vì không có giá trị tuyệt đối nào mà kết quả là số âm
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)
\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)
\(\Leftrightarrow-28x+37\ge12\)
\(\Leftrightarrow-28x\ge12-37\)
\(\Leftrightarrow-28x\ge-25\)
\(\Leftrightarrow x\le\dfrac{25}{28}\)
Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)
b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)
\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)
\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)
\(\Leftrightarrow-6x\ge30\)
\(\Leftrightarrow x\le-5\)
Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)
\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)
\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)
\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)
\(\Leftrightarrow-11x+37< 0\)
\(\Leftrightarrow-11x< -37\)
\(\Leftrightarrow x>\dfrac{37}{11}\)
vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)
a: =>|x-7|=3-2x
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)
b: =>|2x-3|=4x+9
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)
c: =>3x+5=2-5x hoặc 3x+5=5x-2
=>8x=-3 hoặc -2x=-7
=>x=-3/8 hoặc x=7/2
đây là hệ phương trình hay 2 phương trình khác nhau mà có dấu = lại ghi là các
a) ĐK: \(2x+2\ge0\Leftrightarrow x\ge-1\)
\(\left|2x+3\right|=2x+2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=2x+2\\2x+3=-2x-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-2x=2-3\\2x+2x=-2-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(vonghiem\right)\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=\dfrac{-5}{4}\left(khongTMĐK\right)\end{matrix}\right.\)
vậy S=\(\varnothing\)
b)ĐK:\(5x-5\ge0\Leftrightarrow x\ge1\)
\(\left|5x-3\right|=5x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=5x-5\\5x-3=5-5x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=-2\\10x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}vonghiem\\x=0,8\left(KhongTMĐK\right)\end{matrix}\right.\)
Vậy S=\(\varnothing\)