K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(A=x^2\left(2-x\right)\)\(x^2\ge0\forall x\)

\(\Rightarrow\) A nhỏ nhất khi \(2-x\) nhỏ nhất

\(x\le4\) \(\Rightarrow Min_{\left(2-x\right)}=-2\) khi \(x=4\)

\(\Rightarrow MIN_A=4^2\cdot\left(-2\right)=-32\)

Vậy \(MIN_A=-32\Leftrightarrow x=4\)

NV
6 tháng 6 2020

\(A=-x^3+2x^2+32-32=\left(4-x\right)\left(x^2+2x+8\right)-32\)

Do \(x\le4\Rightarrow\left\{{}\begin{matrix}4-x\ge0\\x^2+2x+8=\left(x+1\right)^2+7>0\end{matrix}\right.\)

\(\Rightarrow\left(4-x\right)\left(x^2+2x+8\right)\ge0\Rightarrow A\ge-32\)

\(\Rightarrow A_{min}=-32\) khi \(x=4\)

NV
9 tháng 4 2021

\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)

\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)

\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)

 

NV
29 tháng 10 2019

\(f\left(x\right)=x^4-4x^3+4x^2-5x^2+10x-3\)

\(=\left(x^2-2x\right)^2-5\left(x^2-2x\right)-3\)

Đặt \(t=x^2-2x\Rightarrow t\in\left[-1;8\right]\)

Xét hàm \(f\left(t\right)=t^2-5t-3\) trên \(\left[-1;8\right]\)

\(f\left(-1\right)=3\) ; \(f\left(-\frac{b}{2a}\right)=f\left(\frac{5}{2}\right)=-\frac{37}{4}\); \(f\left(8\right)=21\)

\(\Rightarrow f\left(x\right)_{min}=f\left(\frac{5}{2}\right)=-\frac{37}{4}\)

\(f\left(x\right)_{max}=f\left(8\right)=21\)

27 tháng 6 2021

b, Ta có : \(0\le x\le1\)

\(\Rightarrow-2\le x-2\le-1< 0\)

Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)

\(=2\left(m-1\right)x-m< 0\)

TH1 : \(m=1\) \(\Leftrightarrow m>0\)

TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)

\(0\le x\le1\)

\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)

\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)

\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)

\(\Leftrightarrow1< m< 2\)

Kết hợp TH1 => m > 0

Vậy ...
 

27 tháng 6 2021

\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)

Để pt có hai nghiệm thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)

\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)

\(=-16m^2+40m\)

Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)

Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)

\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)

\(\Rightarrow P_{max}=16;P_{min}=-144\)

Vậy....

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

14 tháng 3 2020

a) Vì \(a_1+a_2+......+a_9\ne0\)

\(\Rightarrow\)Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=.........=\frac{a_8}{a_9}=\frac{a_9}{a_1}=\frac{a_1+a_2+......+a_8+a_9}{a_2+a_3+......+a_9+a_1}=1\)

\(\Rightarrow a_1=a_2\)\(a_2=a_3\); ........... ; \(a_8=a_9\)\(a_9=a_1\)

\(\Rightarrow a_1=a_2=a_2=........=a_9\)( đpcm )

a: |x|+|y|<=3

=>(|x|,|y|) thuộc {(0;0); (0;1); (0;2); (0;3); (1;0); (2;0); (3;0); (1;1); (1;2); (2;1)}

=>(x,y) thuộc {(0;0); (0;1); (0;-1); (1;0); (-1;0); (0;2); (2;0); (0;-2); (-2;0); (0;3); (0;-3); (3;0); (-3;0); (1;1); (-1;-1); (-1;1); (1;-1); (1;2); (-1;2); (2;1); (2;-1); (1;-2); (-2;1)}

b: =>(|x+5|,|y-2|) thuộc {(0;4); (4;0); (0;3); (3;0); (0;2); (2;0); (0;1); (1;0); (0;0); (1;1); (1;2); (2;1); (1;3); (3;1); (2;2)}

=>(x+5;y-2) thuộc {(0;4); (0;-4); (4;0); (-4;0); (0;3); (0;-3); (3;0); (-3;0); (0;2); (0;-2); (2;0); (-2;0); (1;0); (-1;0); (0;1); (0;-1); (0;0); (1;1); (1;-1); (-1;1); (-1;-1); (1;2); (2;1); (-1;-2); (-2;-1); (1;-2); (-2;1); (-1;2); (2;-1); (1;3); (-1;-3); (1;-3); (-1;3); (3;1); (-3;-1); (-3;1); (3;-1); (2;2); (-2;-2); (2;-2); (-2;2)}

Đến đây thì dễ rồi, bạn làm như tìm x,y bình thường thôi

`x, y` làm gì có điều kiện đâu ạ?

13 tháng 11 2016

a) GTNN = 0 khi x = -1

b) GTNN = 503 khi x =0

13 tháng 11 2016

b sai min=39 khi x=-2

10 tháng 4 2018

GTNN = 0

28 tháng 11 2020

Xét \(0\le x\le3\). Viết A dưới dạng \(A=4.\frac{x}{2}.\frac{x}{2}.\left(3-x\right)\)

- Áp dụng bđt Cauchy 3 số cho 3 số không âm \(\frac{x}{2};\frac{x}{2};\left(3-x\right)\)ta được :\(\frac{x}{2}.\frac{x}{2}.\left(3-x\right)\le\left(\frac{\frac{x}{2}+\frac{x}{2}+3-x}{3}\right)^2=1\)

Do đó \(A\le4\left(1\right)\)

Xét x > 3 , khi đó \(A\le0\left(2\right)\). So sánh (1) và (2) ta đi đến kết luận \(maxA=4\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=3-x\\x\ge0\end{cases}\Leftrightarrow x=2}\)